$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftarrows 2 \mathrm{NH}_{3(g)}
$$

Which of the following factors will not alter the position of equilibrium?
A. a pressure decrease
B. a temperature increase
C. the presence of a catalyst
D. the addition of more $\mathrm{N}_{2(\mathrm{~g})}$
87.
A.

B.
C.

D.

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftarrows 2 \mathrm{NO}_{2(g)}
$$

	Initial		Equilibrium	
	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	$\left[\mathrm{NO}_{2}\right]$
Trial 1	0.0400	0.0000	0.0337	0.0125
Trial 2	0.0200	0.0600	0.0429	0.0141

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)}+\text { energy } \rightleftarrows 2 \mathrm{NO}_{2(g)}
$$

Which of the following graphs shows the result of increasing the temperature at time t_{1} ?
(1 mark)
88.

Which of the following represents the $\mathrm{K}_{e q}$ value?
A. 4.64×10^{-3}
B. 3.71×10^{-1}
C. 7.42×10^{-1}
D. 2.16×10^{2}
89. Which of the following is least likely to favour the formation of products?
A. $\quad 2 \mathrm{H}_{2} \mathrm{O}_{(g)} \rightleftarrows 2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)}$
$\mathrm{K}_{e q}=7.3 \times 10^{-18}$
B. $\quad \mathrm{N}_{2} \mathrm{O}_{(g)}+\mathrm{NO}_{2(g)} \rightleftarrows 3 \mathrm{NO}_{(g)}$
$\mathrm{K}_{e q}=4.2 \times 10^{-4}$
C. $\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftarrows 2 \mathrm{NO}_{2(g)}$
$\mathrm{K}_{e q}=4.5$
D. $\mathrm{SO}_{2(g)}+\mathrm{NO}_{2(g)} \rightleftarrows \mathrm{NO}_{(g)}+\mathrm{SO}_{3(g)}$
$\mathrm{K}_{\text {eq }}=85$
90. Consider the following equilibrium:

$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftarrows 2 \mathrm{NH}_{3(g)}
$$

What is the final result of adding some NH_{3} gas to the system at constant volume?
A. $\mathrm{K}_{e q}$ increases.
B. $\left[\mathrm{H}_{2}\right]$ decreases.
C. $\left[\mathrm{NH}_{3}\right]$ decreases.
D. $\mathrm{K}_{e q}$ remains unchanged.
91.

$$
2 \mathrm{CO}_{(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{CO}_{2(g)}
$$

A container is initially filled with CO and O_{2}. How will the [CO] and $\left[\mathrm{CO}_{2}\right]$ change as the system reaches equilibrium?
A.

$[\mathrm{CO}]$	$\left[\mathrm{CO}_{2}\right]$
increase	decrease
increase	increase
decrease	decrease
decrease	increase

92. Two experiments were performed involving the following equilibrium.

The temperature was the same in both experiments.

$$
\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)}
$$

In experiment $\mathrm{A}, 1.0 \mathrm{M} \mathrm{H}_{2}$ and $1.0 \mathrm{M}_{2}$ were initially added to a flask and equilibrium was established. In experiment $\mathrm{B}, 2.0 \mathrm{M} \mathrm{HI}$ was initially added to a second flask and equilibrium was established. Which of the following statements is always true about the equilibrium concentrations?
A. $\left[\mathrm{H}_{2}\right]$ equals $[\mathrm{HI}]$ in experiment A .
B. $[\mathrm{HI}]$ equals $2\left[\mathrm{H}_{2}\right]$ in experiment A .
C. $[\mathrm{HI}]$ in experiment A equals $[\mathrm{HI}]$ in experiment B.
D. $[\mathrm{HI}]$ in experiment A equals $\frac{1}{2}\left[\mathrm{I}_{2}\right]$ in experiment B.
93. Which of the following reactions is accompanied by an increase in enthalpy?
A. $\quad 2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{2(g)}+113 \mathrm{~kJ}$
B. $2 \mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}-484 \mathrm{~kJ} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
C. $2 \mathrm{SO}_{3(g)} \rightleftarrows 2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \quad \Delta \mathrm{H}=+197 \mathrm{~kJ}$
D. $4 \mathrm{HCl}_{(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{H}_{2} \mathrm{O}_{(g)}+2 \mathrm{Cl}_{2(g)} \quad \Delta \mathrm{H}=-111.4 \mathrm{~kJ}$
94. Two substances are mixed and no reaction occurs. With respect to enthalpy and entropy, which of the following could explain why no reaction occurs?
A.

Enthalpy	Entropy
increases	increases
increases	decreases
decreases	increases
decreases	decreases

95.

$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftarrows 2 \mathrm{NH}_{3(g)}
$$

Which of the following diagrams represents what happens to the forward and reverse reaction rates when the catalyst $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is added?
A.

B.

C.

D.

96. Temperature is gradually decreased then held constant in an exothermic equilibrium. Which of the following represents the change in the reverse reaction rate?
A.

B.

C.

D.

$$
\mathrm{CaCO}_{3(s)}+2 \mathrm{HF}_{(g)} \rightleftarrows \mathrm{CaF}_{2(s)}+\mathrm{H}_{2} \mathrm{O}_{(g)}+\mathrm{CO}_{2(g)}
$$

Which of the following represents the equilibrium $\left[\mathrm{H}_{2} \mathrm{O}\right]$?
A. $\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{[\mathrm{HF}]^{2}}{\mathrm{~K}_{e q}\left[\mathrm{CO}_{2}\right]}$
B. $\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\mathrm{K}_{e q}[\mathrm{HF}]^{2}}{\left[\mathrm{CO}_{2}\right]}$
C. $\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{[\mathrm{HF}]^{2}\left[\mathrm{CaCO}_{3}\right]}{\mathrm{K}_{e q}\left[\mathrm{CO}_{2}\right]\left[\mathrm{CaF}_{2}\right]}$
D. $\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\mathrm{K}_{e q}[\mathrm{HF}]^{2}\left[\mathrm{CaCO}_{3}\right]}{\left[\mathrm{CO}_{2}\right]\left[\mathrm{CaF}_{2}\right]}$
98. Which of the following reactions will proceed furthest toward completion?
A. $\quad \mathrm{Si}_{(s)}+\mathrm{O}_{2(g)} \rightleftarrows \mathrm{SiO}_{2(s)} \quad \mathrm{K}_{e q}=2.0 \times 10^{142}$
B. $2 \mathrm{HBr}_{(g)} \rightleftarrows \mathrm{H}_{2(g)}+\mathrm{Br}_{2(g)} \quad \mathrm{K}_{e q}=7.0 \times 10^{-20}$
C. $2 \mathrm{H}_{2} \mathrm{O}_{(g)} \rightleftarrows 2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \quad \mathrm{K}_{e q}=7.3 \times 10^{-18}$
D. $\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightleftarrows \mathrm{C}_{2} \mathrm{H}_{6(g)} \quad \mathrm{K}_{e q}=9.0 \times 10^{19}$
99.

$$
\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightleftarrows \mathrm{CO}_{(g)}+3 \mathrm{H}_{2(g)} \quad \mathrm{K}_{e q}=5.67
$$

An equilibrium mixture of this system was found to contain the following concentrations: $\left[\mathrm{CH}_{4}\right]=0.59 \mathrm{M},\left[\mathrm{H}_{2} \mathrm{O}\right]=0.63 \mathrm{M},[\mathrm{CO}]=0.25 \mathrm{M}$.
What was the equilibrium $\left[\mathrm{H}_{2}\right]$?
A. $\quad 0.26 \mathrm{M}$
B. $\quad 0.64 \mathrm{M}$
C. 2.0 M
D. 8.4 M
100.
$\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)} \quad \mathrm{K}_{e q}=49.5$ at $440^{\circ} \mathrm{C}$
If 5.0 M HI is initially placed into a container, what will be the equilibrium $[\mathrm{HI}]$?
A. $\quad 0.33 \mathrm{M}$
B. $\quad 3.9 \mathrm{M}$
C. 4.4 M
D. 4.8 M
101.
$\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)} \quad \mathrm{K}_{e q}=49.5$ at $440^{\circ} \mathrm{C}$
If $0.120 \mathrm{M} \mathrm{H}_{2}, 0.120 \mathrm{M} \mathrm{I}_{2}$ and 0.844 M HI are placed into a container at $440^{\circ} \mathrm{C}$, which of the following is true as equilibrium is approached?
A. $\left[\mathrm{I}_{2}\right]$ decreases significantly.
B. $[\mathrm{HI}]$ decreases significantly.
C. $\left[\mathrm{H}_{2}\right]$ decreases significantly.
D. $\left[\mathrm{H}_{2}\right]$ remains the same.
102. A small amount of HCl is added to the following equilibrium system:

$$
2 \mathrm{CrO}_{4(a q)}^{2-}+2 \mathrm{H}_{(a q)}^{+} \rightleftarrows \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

How do the $\left[\mathrm{CrO}_{4}^{2-}\right]$ and the reverse reaction rate change as equilibrium is re-established?
A.

$\left[\mathrm{CrO}_{4}{ }^{2-}\right]$	Reverse Rate
increases	increases
increases	decreases
decreases	decreases
decreases	increases

103.

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftarrows 2 \mathrm{NO}_{2(g)}
$$

colourless brown
If $\mathrm{N}_{2} \mathrm{O}_{4}$ is placed in a flask at a constant temperature, which of the following is true as the system approaches equilibrium?
A. The colour gets darker as $\left[\mathrm{NO}_{2}\right]$ increases.
B. The colour gets lighter as $\left[\mathrm{NO}_{2}\right]$ decreases.
C. The colour gets darker as $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ increases.
D. The colour gets lighter as $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ decreases.
104. $\quad \mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftarrows 2 \mathrm{NO}_{2(g)}$
colourless brown
The system above reaches equilibrium. Considering enthalpy and entropy factors, which of the following is true with respect to the forward reaction?
A. The entropy is increasing and the reaction is exothermic.
B. The entropy is decreasing and the reaction is exothermic.
C. The entropy is increasing and the reaction is endothermic.
D. The entropy is decreasing and the reaction is endothermic.
105. In which of the following reactions do the tendencies for minimum enthalpy and maximum entropy both favour reactants?
A. $\quad 3 \mathrm{O}_{2(\mathrm{~g})} \stackrel{?}{\stackrel{ }{\rightleftarrows}} 2 \mathrm{O}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=+285 \mathrm{~kJ}$
B. $\quad \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \underset{\stackrel{?}{\rightleftarrows}}{\rightleftarrows} 2 \mathrm{NH}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-92 \mathrm{~kJ}$
C. $2 \mathrm{BrCl}_{(g)} \underset{\stackrel{?}{\rightleftarrows}}{\rightleftarrows} \mathrm{Br}_{2(g)}+\mathrm{Cl}_{2(g)} \quad \Delta \mathrm{H}=-29.3 \mathrm{~kJ}$
D. $\mathrm{CaCO}_{3(s)} \stackrel{?}{\rightleftarrows} \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)} \quad \Delta \mathrm{H}=+175 \mathrm{~kJ}$
106.

$$
\mathrm{CaCO}_{3(s)} \rightleftarrows \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)} \quad \Delta \mathrm{H}=+175 \mathrm{~kJ}
$$

Which of the following diagrams best represents the change in the concentration of CO_{2} as temperature is decreased at time t_{1} ?
A.

B.

C.

D.

107. The Haber Process is used to produce ammonia commercially according to the following equilibrium:

$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftarrows 2 \mathrm{NH}_{3(g)}+\text { energy }
$$

Which of the following conditions will produce the highest yield of ammonia?
A. increase temperature and increase pressure
B. increase temperature and decrease pressure
C. decrease temperature and increase pressure
D. decrease temperature and decrease pressure
108.

$$
\mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+2 \mathrm{OH}_{(a q)}^{-} \rightleftarrows 2 \mathrm{CrO}_{4(a q)}^{2-}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \quad \mathrm{K}_{e q}=4.14
$$

The concentration of ions at equilibrium was measured at a specific temperature and found to be $\left[\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right]=0.100 \mathrm{M}$ and $\left[\mathrm{OH}^{-}\right]=0.020 \mathrm{M}$.
What is the equilibrium $\left[\mathrm{CrO}_{4}{ }^{2-}\right]$?
A. $\quad 1.7 \times 10^{-4} \mathrm{M}$
B. $3.1 \times 10^{-3} \mathrm{M}$
C. $1.3 \times 10^{-2} \mathrm{M}$
D. $2.0 \times 10^{-1} \mathrm{M}$
109. In which of the following equilibria does the concentration of reactants equal the concentration of products?
A. $\quad \mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftarrows 2 \mathrm{NO}_{2(g)} \quad \mathrm{K}_{e q}=0.71$
B. $\mathrm{H}^{+}{ }_{(a q)}+\mathrm{OH}^{-}(a q) \quad \rightleftarrows \mathrm{H}_{2} \mathrm{O}_{(\ell)} \quad \mathrm{K}_{e q}=1.0 \times 10^{14}$
C. $\quad \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)} \rightleftarrows \mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \quad \mathrm{K}_{e q}=0.279$
D. $\mathrm{SnO}_{2(s)}+2 \mathrm{H}_{2(g)} \rightleftarrows \mathrm{Sn}_{(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)} \quad \mathrm{K}_{e q}=1.00$
110.

$$
\mathrm{C}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightleftarrows \mathrm{CO}_{(g)}+\mathrm{H}_{2(g)}
$$

At equilibrium, $4.0 \times 10^{-2} \mathrm{~mol} \mathrm{H}_{2}, 4.0 \times 10^{-2} \mathrm{~mol} \mathrm{CO}, 1.0 \times 10^{-2} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ and $1.0 \times 10^{-2} \mathrm{~mol} \mathrm{C}$ were present in a 1.0 L container. What is the value of $\mathrm{K}_{e q}$?
A. 0.063
B. 0.16
C. 6.3
D. 16
111.

$$
2 \mathrm{COF}_{2(g)} \rightleftarrows \mathrm{CO}_{2(g)}+\mathrm{CF}_{4(g)}
$$

Initially, $0.12 \mathrm{M} \mathrm{CO}_{2}$ and $0.20 \mathrm{M} \mathrm{CF}_{4}$ are placed in a container. At equilibrium, it is found that the $\left[\mathrm{COF}_{2}\right]$ is 0.040 M . What is the value of $\mathrm{K}_{e q}$?
A. 0.089
B. 0.45
C. 8.0
D. 11
112. Reacting systems tend toward which of the following?
A.

Entropy	Enthalpy
minimum	maximum
minimum	minimum
maximum	minimum
maximum	maximum

113.

$$
\mathrm{NH}_{4} \mathrm{NO}_{3(s)} \stackrel{?}{\rightleftarrows} \quad \mathrm{~N}_{2} \mathrm{O}_{(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)} \quad \Delta \mathrm{H}=-37 \mathrm{~kJ}
$$

Which of the following is true?
A.

Enthalpy	Entropy	Outcome
favours reactants	favours reactants	reaction does not occur
favours products	favours products	reaction goes to completion
favours reactants	favours products	reaction reaches equilibrium
favours products	favours reactants	reaction reaches equilibrium

114.

$$
\text { energy }+2 \mathrm{KClO}_{3(s)} \rightleftarrows 2 \mathrm{KCl}_{(s)}+3 \mathrm{O}_{2(g)}
$$

Which of the following will cause a shift to the left?
A. adding more O_{2}
B. adding more KCl
C. removing some KClO_{3}
D. increasing the temperature
115.

$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftarrows 2 \mathrm{NH}_{3(g)}+\text { energy }
$$

The following diagram represents the rate of the reverse reaction.

Time
Which of the following stresses explains what happened at t_{1} ?
A. $\left[\mathrm{H}_{2}\right]$ increased.
B. $\left[\mathrm{N}_{2}\right]$ decreased.
C. $\left[\mathrm{NH}_{3}\right]$ increased.
D. $\left[\mathrm{NH}_{3}\right]$ decreased.
116. Limestone is decomposed to make quicklime (CaO) according to the following equilibrium:

$$
\mathrm{CaCO}_{3(s)}+175 \mathrm{~kJ} \rightleftarrows \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}
$$

Which of the following conditions would produce the greatest yield of $\mathrm{CaO}_{(s)}$?

	Temperature	Pressure
A.	low	low
B.	low	high
C.	high	low
D.	high	high

117.

$$
\mathrm{H}_{2(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightleftarrows \mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

Which of the following represents the concentration of O_{2} at equilibrium?
A. $\left[\mathrm{O}_{2}\right]=\left(\frac{1}{\mathrm{~K}_{e q}\left[\mathrm{H}_{2}\right]}\right)^{2}$
B. $\left[\mathrm{O}_{2}\right]=\mathrm{K}_{e q}\left[\mathrm{H}_{2}\right]$
C. $\left[\mathrm{O}_{2}\right]=\left(\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]}{\mathrm{K}_{e q}\left[\mathrm{H}_{2}\right]}\right)^{2}$
D. $\left[\mathrm{O}_{2}\right]=\sqrt{\frac{1}{\mathrm{~K}_{e q}\left[\mathrm{H}_{2}\right]}}$
118.

$$
2 \mathrm{CrO}_{4(a q)}^{2-}+2 \mathrm{H}_{(a q)}^{+} \rightleftarrows \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}^{2-}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}
$$

A solution of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is added, and a precipitate of BaCrO_{4} forms. In which direction will the equilibrium shift, and what will happen to the value of $\mathrm{K}_{e q}$?
A. Equilibrium shifts left, and $\mathrm{K}_{e q}$ decreases.
B. Equilibrium shifts right, and $\mathrm{K}_{e q}$ increases.
C. Equilibrium shifts left, and $\mathrm{K}_{e q}$ remains constant.
D. Equilibrium does not shift, and $\mathrm{K}_{e q}$ remains constant.
119.

$$
\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{CO}_{(g)}+3 \mathrm{H}_{2(g)}
$$

At equilibrium, $1.2 \mathrm{~mol} \mathrm{CH}_{4}, 1.2 \mathrm{~mol}_{2} \mathrm{O}, 0.080 \mathrm{~mol} \mathrm{CO}$ and $0.040 \mathrm{~mol}_{2}$ are present in a 1.0 L container. What is the value of $\mathrm{K}_{e q}$?
A. 4.3×10^{-6}
B. 3.6×10^{-6}
C. 2.7×10^{-3}
D. 2.3×10^{5}
120.

$$
2 \mathrm{NO}_{(g)}+2 \mathrm{H}_{2(g)} \rightleftarrows \mathrm{N}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

Initially, $0.100 \mathrm{~mol} \mathrm{NO}, 0.0500 \mathrm{~mol} \mathrm{H}_{2}$ and $0.100 \mathrm{~mol}_{2} \mathrm{O}$ are placed in a 1.0 L container. At equilibrium, the $\left[\mathrm{H}_{2} \mathrm{O}\right]=0.138 \mathrm{M}$. What is the value of $\mathrm{K}_{e q}$?
A. 3.5
B. 6.5×10^{2}
C. 1.5×10^{-3}
D. 1.3×10^{3}

Written-Solution Questions:

121.

$$
2 \mathrm{COF}_{2(g)} \rightleftarrows \mathrm{CO}_{2(g)}+\mathrm{CF}_{4(g)} \quad \mathrm{K}_{e q}=2.00
$$

A 2.00 L container is filled with 0.500 mol of COF_{2}.
Calculate the $\left[\mathrm{COF}_{2}\right]$ at equilibrium.
122.

$$
\begin{array}{ccc}
\mathrm{Cu}_{(a q)}^{2+} & +\underset{{ }^{2}}{4 \mathrm{Br}_{(a q)}^{-}} \stackrel{\mathrm{CuBr}_{4}{ }_{4 a q)}^{2-}}{\text { blue }} & \text { colourless }
\end{array}
$$

Cooling the equilibrium changes the colour from green to blue. What effect will the decrease in temperature have on $\mathrm{K}_{e q}$? Explain, using Le Chatelier's Principle.
123. A flask is initially filled with some HI . At equilibrium, the $[\mathrm{HI}]=0.80 \mathrm{~mol} / \mathrm{L}$ What is the $\left[\mathrm{H}_{2}\right]$ at equilibrium?

$$
2 \mathrm{HI}_{(g)} \rightleftarrows \mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \quad \mathrm{K}_{e q}=0.25
$$

124.

$$
2 \mathrm{NOCl}_{(g)} \rightleftarrows 2 \mathrm{NO}_{(g)}+\mathrm{Cl}_{2(g)} \quad \mathrm{K}_{e q}=1.6 \times 10^{-5}
$$

A 1.00 L flask is filled with $0.20 \mathrm{~mol} \mathrm{NOCl}, 0.10 \mathrm{~mol} \mathrm{NO}$ and $0.10 \mathrm{~mol} \mathrm{Cl}_{2}$. State and show by calculation the direction in which the reaction proceeds to reach equilibrium.
125.

$$
\mathrm{H}_{2(g)}+\mathrm{Br}_{2(g)} \rightleftarrows 2 \mathrm{HBr}_{(g)} \quad \mathrm{K}_{e q}=14.8
$$

A closed container was initially filled with equal moles of H_{2} and Br_{2}. When equilibrium is reached, the $[\mathrm{HBr}]$ is $0.329 \mathrm{~mol} / \mathrm{L}$. What was the initial $\left[\mathrm{H}_{2}\right]$?
126. Write four statements that apply to all chemical equilibrium systems.
127.

$$
\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)}
$$

Time

The temperature is increased at t_{1} and equilibrium is re-established at t_{2}.
a) On the above graph, sketch the line representing the $[\mathrm{HI}]$ between time t_{1} and t_{3}.
b) Calculate the value of $\mathrm{K}_{e q}$ after t_{2}.
128.

$$
2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{SO}_{3(g)}
$$

A 1.00 L container is initially filled with $0.100 \mathrm{~mol} \mathrm{SO}_{2}$ and $0.100 \mathrm{~mol} \mathrm{O}_{2}$.
At equilibrium the O_{2} concentration is $0.060 \mathrm{~mol} / \mathrm{L}$. Calculate the value of $\mathrm{K}_{e q}$.
129.

$$
2 \mathrm{NF}_{2(g)} \rightleftarrows \mathrm{N}_{2} \mathrm{~F}_{4(g)}
$$

Equilibrium shifts to the right when volume is decreased. Describe the changes in reaction rates that cause this shift to the right.
130.

$$
\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)}
$$

Initially, $0.200 \mathrm{~mol} \mathrm{H}_{2}$ and $0.200 \mathrm{~mol}_{2}$ are added to an empty 2.00 L container. At equilibrium, the $\left[\mathrm{I}_{2}\right]=0.020 \mathrm{~mol} / \mathrm{L}$. What is the value of $\mathrm{K}_{e q}$?
131. State Le Chatelier's Principle.
132.

$$
\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightleftarrows \mathrm{CO}_{(g)}+3 \mathrm{H}_{2(g)}
$$

Initially, $0.060 \mathrm{~mol} \mathrm{CH}_{4}, 0.080 \mathrm{~mol}_{2} \mathrm{O}, 0.280 \mathrm{~mol} \mathrm{CO}$ and $0.740 \mathrm{~mol}_{2}$ are placed into a 4.00 L container. At equilibrium, the $\left[\mathrm{H}_{2}\right]=0.200 \mathrm{~mol} / \mathrm{L}$. What is the value of $\mathrm{K}_{e q}$?
133. Chemical reactions tend toward a position of minimum enthalpy and maximum entropy.
a) What is meant by the term enthalpy?
b) What is meant by the term entropy?
134.

$$
\mathrm{H}_{2(g)}+\mathrm{Br}_{2(g)} \rightleftarrows 2 \mathrm{HBr}_{(g)} \quad \mathrm{K}_{e q}=12.0
$$

What is the $[\mathrm{HBr}]$ at equilibrium?
135.

$$
\mathrm{Zn}\left(\mathrm{IO}_{3}\right)_{2(s)} \rightleftarrows \mathrm{Zn}_{(a q)}^{2+}+2 \mathrm{IO}_{3(a q)}^{-}
$$

a) Identify the stress applied at t_{1}.

136. Describe the nature of dynamic equilibrium.
137.

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftarrows 2 \mathrm{NO}_{2(g)} \quad \mathrm{K}_{e q}=9.5 \times 10^{-3}
$$

Initially, $0.060 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$ and $0.020 \mathrm{~mol} \mathrm{NO}_{2}$ are placed into a 2.00 L container. Use calculations to determine the direction in which the reaction proceeds in order to reach equilibrium.
138.

$$
\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \rightleftarrows \mathrm{CO}_{(g)}+3 \mathrm{H}_{2(g)}
$$

$\mathrm{K}_{e q}$	Temperature
1.78×10^{-3}	$800^{\circ} \mathrm{C}$
4.68×10^{-2}	$1000^{\circ} \mathrm{C}$

Is the forward reaction in this equilibrium exothermic or endothermic?
Explain your answer.
139.
140.
141.
142.

$$
\mathrm{CO}_{(g)}+\mathrm{Cl}_{2(g)} \rightleftarrows \mathrm{COCl}_{2(g)}
$$

At equilibrium, the system contains $2.00 \mathrm{~mol} \mathrm{CO}, 1.00 \mathrm{~mol} \mathrm{Cl}{ }_{2}$ and $0.200 \mathrm{~mol} \mathrm{COCl}_{2}$ in a 2.0 L container. Calculate the value of $\mathrm{K}_{e q}$.

$$
\mathrm{N}_{2(g)}+3 \mathrm{H}_{2(g)} \rightleftarrows 2 \mathrm{NH}_{3(g)} \quad \Delta \mathrm{H}=-92 \mathrm{~kJ}
$$

The system is normally maintained at a temperature of approximately $500^{\circ} \mathrm{C}$.
a) Explain why $1000^{\circ} \mathrm{C}$ is not used.
b) Explain why $100^{\circ} \mathrm{C}$ is not used.

In an experiment, 0.100 moles of SO_{3} and 0.100 moles of NO are placed in a 1.00 L container. When equilibrium is achieved, $\left[\mathrm{NO}_{2}\right]=0.0414 \mathrm{~mol} / \mathrm{L}$.
In an experiment, 0.100 m
in a 1.00 L container. W
Calculate the $\mathrm{K}_{e q}$ value.

$$
\mathrm{SO}_{3(g)}+\mathrm{NO}_{(g)} \rightleftarrows \mathrm{NO}_{2(g)}+\mathrm{SO}_{2(g)}
$$

$$
\mathrm{C}_{3} \mathrm{H}_{8(g)}+5 \mathrm{O}_{2(g)} \xrightarrow{?} 3 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

Explain, in terms of increasing or decreasing entropy and enthalpy, whether or not the reaction will reach equilibrium.
143.

$$
\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)} \quad \mathrm{K}_{e q}=64
$$

Equal moles of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI are placed in a 1.0 L container. Use calculations to determine the direction the reaction will proceed in order to reach equilibrium.
144.

$$
\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftarrows 2 \mathrm{HI}_{(g)}
$$

The system is said to "shift right" as the result of the addition of extra $\mathrm{H}_{2(\mathrm{~g})}$. Describe the sequence of changes in both forward and reverse reaction rates as the system goes from the original equilibrium to the new equilibrium.
145.

$$
2 \mathrm{NO}_{(g)}+\mathrm{Cl}_{2(g)} \rightleftarrows 2 \mathrm{NOCl}_{(g)} \quad \mathrm{K}_{e q}=8.5
$$

A closed flask is found to contain $0.40 \mathrm{M} \mathrm{NO}_{(g)}, 0.32 \mathrm{M} \mathrm{Cl}_{2(g)}$ and $5.6 \mathrm{M} \mathrm{NOCl}_{(g)}$. Use appropriate calculations to determine the direction the reaction proceeds to reach equilibrium.
146.

$$
\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{OH})_{2(a q)}^{+} \rightleftarrows \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3(s)}+\mathrm{H}_{(a q)}^{+}
$$

a) Some $\mathrm{HCl}_{(a q)}$ is added to the equilibrium. What happens to the amount of solid $\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})_{3}$? Explain.
b) The HCl is added at time t_{1} and equilibrium is re-established at time t_{2}. On the axis below, sketch what happens to the reverse reaction rate.

Time
147.

$$
\mathrm{N}_{2} \mathrm{O}_{4(g)} \rightleftarrows 2 \mathrm{NO}_{2(g)} \quad \Delta \mathrm{H}=+59 \mathrm{~kJ}
$$

148.

$$
\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{NO}_{(g)} \quad \mathrm{K}_{e q}=0.0095
$$

Initially, $0.15 \mathrm{~mol} \mathrm{~N}_{2}$ and $0.15 \mathrm{~mol} \mathrm{O}_{2}$ were placed in a 1.0 L container. Calculate the concentration of all species at equilibrium.

$$
\begin{equation*}
\mathrm{N}_{2(g)}+\mathrm{O}_{2(g)} \rightleftarrows 2 \mathrm{NO}_{(g)} \quad \mathrm{K}_{e q}=8.1 \times 10^{-3} \tag{149.}
\end{equation*}
$$

A 2.0 L container is filled with $0.15 \mathrm{~mol} \mathrm{~N}_{2}, 0.15 \mathrm{~mol} \mathrm{O}_{2}$ and 0.050 mol NO . Does the [NO] increase or decrease as equilibrium is established? Support your answer with appropriate calculations.

Multiple-Choice Answers

1	A	6	C	11	D	16	A	21	C	26	B	31	B	36	C	41	A	46	D
2	D	7	A	12	B	17	A	22	C	27	B	32	C	37	B	42	B	47	B
3	C	8	C	13	A	18	D	23	C	28	A	33	D	38	C	43	D	48	D
4	C	9	A	14	D	19	C	24	B	29	D	34	A	39	D	44	A	49	D
5	D	10	B	15	A	20	A	25	A	30	D	35	C	40	B	45	A	50	B

51	C	56	C	61	D	66	C	71	D	76	D	81	A	86	C	91	D	96
B																		
52	A	57	A	62	B	67	A	72	C	77	A	82	D	87	A	92	C	97
53	C	58	A	63	C	68	C	73	B	78	A	83	B	88	A	93	C	98
54	A	59	B	64	A	69	C	74	A	79	A	84	A	89	A	94	B	99
	C																	
55	C	60	B	65	A	70	B	75	D	80	C	85	C	90	D	95	A	100

101	D	106	A	111	D	116	C												

Written-Solution Answers:

121.

	$2 \mathrm{COF}_{2(g)}$	\rightleftarrows	$\mathrm{CO}_{2(\mathrm{~g})}$	$+$	$\mathrm{CF}_{4(g)}$
[I]	$\frac{0.500 \mathrm{~mol}}{2.00 \mathrm{~L}}=0.250 \mathrm{~mol} / \mathrm{L}$		0		0
[C]	$-2 x$		$+x$		$+x$
[E]	$0.250-2 x$		x		x
$\mathrm{K}_{e q}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{CF}_{4}\right]}{\left[\mathrm{COF}_{2}\right]^{2}}$					
$2.00=\frac{(x)(x)}{(0.250-2 x)^{2}}$					
$x=0.0923 \mathrm{~mol} / \mathrm{L}$					
$\left[\mathrm{COF}_{2}\right]=0.250-2 x$					
$=0.250-2(0.0923)$					
	$=0.065 \mathrm{~mol} / \mathrm{L}$				

122. The value of $\mathrm{K}_{e q}$ decreased.

When the temperature stress is applied to the equilibrium system, the system shifts to the left to offset the stress and in the new equilibrium, the [products] has decreased.
123. $\quad \mathrm{K}_{e q}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}$

$$
0.25=\frac{(x)(x)}{(0.80)^{2}}
$$

$$
x=0.40
$$

$\left[\mathrm{H}_{2}\right]=0.40 \mathrm{M}$
124. Direction: Reaction proceeds to the left.

Calculations:

$$
\begin{aligned}
2 \mathrm{NOCl}_{(g)} & \rightleftarrows 2 \mathrm{NO}_{(g)}+\mathrm{Cl}_{2(g)} \\
\mathrm{K}_{\text {Trial }} & =\frac{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}{[\mathrm{NOCl}]^{2}} \\
& =\frac{(0.10)^{2}(0.10)}{(0.20)^{2}} \\
& =0.025 \\
\mathrm{~K}_{\text {Trial }} & >\mathrm{K}_{e q}
\end{aligned}
$$

125.

	$\mathrm{H}_{2(g)}$	+	$\mathrm{Br}_{2(g)}$	\rightleftarrows
$[\mathrm{I}]$	x	x		$0 \mathrm{HBr}_{(g)}$
$[\mathrm{C}]$	-0.1645	-0.1645		+0.329
$[\mathrm{E}]$	$x-0.1645$	$x-0.1645$		0.329

$$
\begin{aligned}
\mathrm{K}_{e q} & =\frac{[\mathrm{HBr}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]} \\
14.8 & =\frac{(0.329)^{2}}{(x-0.1645)(x-0.1645)} \\
x & =0.250 \mathrm{M} \\
{\left[\mathrm{H}_{2}\right] } & =0.250 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

126. - system must be closed

- temperature is constant
- forward and reverse rates are equal
- macroscopic properties are constant
- can be achieved from either direction
- concentration of reactants and products are constant

127. a)

b)

$$
\begin{aligned}
\mathrm{K}_{e q} & =\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]} \\
& =\frac{(1.0)^{2}}{(0.5)(0.1)} \\
& =20
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{K}_{e q} & =\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \\
& =\frac{(0.080)^{2}}{(0.020)^{2}(0.060)} \\
& =2.7 \times 10^{2}
\end{aligned}
$$

129. Both forward and reverse rates increase as a result of increased concentration.
The forward rate increases more than the reverse rate, so the equilibrium shifts to the right.

130. | | H_{2} | + | I_{2} | \rightleftarrows | 2 HI |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $[\mathrm{I}]$ | $0.100 \mathrm{~mol} / \mathrm{L}$ | 0.100 | 0 | | |
| $[\mathrm{C}]$ | -0.080 | -0.080 | | +0.160 | |
| | $[\mathrm{E}]$ | 0.020 | 0.020 | | 0.160 |

$$
\mathrm{K}_{e q}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{(0.160)^{2}}{(0.020)(0.020)}=64
$$

131. Le Chatelier's Principle states that when a stress is placed on an equilibrium system, the system will shift to offset this stress until a new equilibrium is reached.
132.

	CH_{4}					
[I]	+	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	CO	+	$3 \mathrm{H}_{2}$
[C]	$-0.015 \mathrm{~mol} / \mathrm{L}$	0.020		0.070	0.185	
[E]	0.010		-0.005		+0.005	+0.015

$$
\begin{aligned}
\mathrm{K}_{e q} & =\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
& =\frac{(0.075)(0.200)^{3}}{(0.010)(0.015)} \\
& =4.0
\end{aligned}
$$

133. Enthalpy is a measure of heat content. Entropy is a measure of randomness.
134.

| | H_{2} | + | Br_{2} | \rightleftarrows | 2 HBr |
| ---: | :---: | :---: | :---: | :---: | :---: |\quad| $\mathrm{K}_{e q}$ | $=\frac{[\mathrm{HBr}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]}=\frac{(2 x)^{2}}{(0.020-x)^{2}}=12.0$ |
| :---: | :---: |
| $[\mathrm{I}]$ | 0.020 |

135. a) More $\mathrm{Zn}_{(a q)}^{2+}$ has been added.

136. In a dynamic equilibrium, the forward reaction and reverse reaction continue to proceed at equal rates.
137. $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=\frac{0.060 \mathrm{~mol}}{2.00 \mathrm{~L}}=0.030 \mathrm{~mol} / \mathrm{L}$

$$
\begin{aligned}
{\left[\mathrm{NO}_{2}\right] } & =\frac{0.020 \mathrm{~mol}}{2.00 \mathrm{~L}}=0.010 \mathrm{~mol} / \mathrm{L} \\
\mathrm{~K}_{\text {trial }} & =\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{(0.010)^{2}}{(0.030)}=3.3 \times 10^{-3} \\
\mathrm{~K}_{\text {trial }} & <\mathrm{K}_{e q}
\end{aligned}
$$

\therefore The reaction proceeds to the right.
138. This equilibrium is endothermic.

Since $\mathrm{K}_{e q}$ increases as a result of a temperature increase, equilibrium has shifted to the right.
139.

$$
\begin{aligned}
\mathrm{K}_{e q} & =\frac{\left[\mathrm{COCl}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]} & =\frac{(0.100)}{(1.00)(0.500)} \\
& =\frac{(0.200 \mathrm{~mol} / 2.0 \mathrm{~L})}{(2.00 \mathrm{~mol} / 2.0 \mathrm{~L})(1.00 \mathrm{~mol} / 2.0 \mathrm{~L})} & =0.20
\end{aligned}
$$

140. Equilibrium will be shifted to the left, reducing the yield of NH_{3}. The rate of the reaction would be too low.
141. Entropy increases in the forward reaction.

Enthalpy decreases in the forward reaction.

Since both favour products, equilibrium will not be attained; or the reaction will go to completion.

142. | | SO_{3} | + | NO | \rightleftarrows | NO_{2} | + |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $[\mathrm{I}]$ | 0.100 | 0.100 | | SO_{2} | $\mathrm{~K}_{e q}=$ | $\frac{\left[\mathrm{NO}_{2}\right]\left[\mathrm{SO}_{2}\right]}{\left[\mathrm{SO}_{3}\right][\mathrm{NO}]}$ |
| $[\mathrm{C}]$ | -0.0414 | -0.0414 | | +0.0414 | +0.0414 | $=\frac{(0.0414)(0.0414)}{(0.059)(0.059)}$ |
| $[\mathrm{E}]$ | 0.059 | 0.059 | 0.0414 | 0.0414 | $=0.50$ | |
143.

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftarrows 2 \mathrm{HI} \quad \text { Trial } \mathrm{K}_{e q}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

$\begin{array}{ccc}\text { [I] } & x & x\end{array}$

$$
\begin{aligned}
& =\frac{(x)^{2}}{(x)(x)} \\
& =1
\end{aligned}
$$

Since Trial $\mathrm{K}_{e q}<\mathrm{K}_{e q}$, equilibrium is established by proceeding to the right.
144. As $\left[\mathrm{H}_{2}\right]$ is increased the forward rate increases. The forward rate will be greater than the reverse rate, resulting in more HI being produced.

The $\left[\mathrm{H}_{2}\right]$ is consumed as the shift occurs and the forward rate starts to decrease. The increasing [HI] results in an increasing reverse rate.

At the new equilibrium the forward and reverse rates will be equal.
145. \quad Trial $\mathrm{K}_{e q}=\frac{[\mathrm{NOCl}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}=\frac{(5.6)^{2}}{(0.40)^{2}(0.32)}=6.1 \times 10^{2}$

Since Trial $\mathrm{K}_{e q}>\mathrm{K}_{e q}$,
the equilibrium will proceed left to reduce the Trial $\mathrm{K}_{e q}$ value to $\mathrm{K}_{e q}$.
146. a) The amount of solid decreases because the equilibrium shifts left.
b)

Reverse
Reaction Rate

Time
147. a)

$$
\mathrm{K}_{e q}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{(0.65)^{2}}{0.60}=0.70 \quad \text { b) } \quad \mathrm{K}_{e q}=\frac{(0.63)^{2}}{0.61}=0.65
$$

c) Stress: Temperature was decreased

Explanation: because $\mathrm{K}_{e q}$ decreased.
The appearance of the graph is consistent with a temperature shift.
148.

149.
$\mathrm{K}_{e q}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{O}_{2}\right]}=8.1 \times 10^{-3}$
Trial $\mathrm{K}_{e q}=\frac{(0.025)^{2}}{(0.075)(0.075)}=0.11$
Trial $\mathrm{K}_{e q}>\mathrm{K}_{e q}$ so reaction proceeds to the left
[NO] decreases

