Chemistry 11

Organic Chemistry

Are you feeling like a happy Organic Chemistry Pony fully of rainbows, sunshine and joy?

...Or are you more like this guy? (don't worry...this is the last booklet)

Before Organic Exam

After Organic Exam

Book 3

Name: ___________________________ Teacher Key ___________________________

Block: _______
Functional Group Overview

R^- represents the hydrocarbon chain.

<table>
<thead>
<tr>
<th>Class of Compound</th>
<th>Functional Group</th>
<th>General Formula</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>halocarbon</td>
<td>$-F, -Cl, -Br, -I$</td>
<td>R^-X</td>
<td>CH$_3$Cl, chloro methane</td>
</tr>
<tr>
<td>alcohol</td>
<td>$-OH$</td>
<td>R^-OH</td>
<td>CH$_3$CH$_2$CH$_2$OH, 1-propanol</td>
</tr>
<tr>
<td>ether</td>
<td>O</td>
<td>R^-O-R'</td>
<td>CH$_3$OCH$_2$CH$_3$, methoxyethane</td>
</tr>
<tr>
<td>aldehyde</td>
<td>C-H</td>
<td></td>
<td>CH$_3$CH$_2$CH=H, propanal</td>
</tr>
<tr>
<td>Ketone</td>
<td>C</td>
<td>R^- C^O</td>
<td>CH$_3$CCH$_3$, propanone</td>
</tr>
<tr>
<td>Carboxylic acid</td>
<td>O-C-OH</td>
<td>R^- C-OH</td>
<td>CH$_3$CH$_2$COH, propanoic acid</td>
</tr>
<tr>
<td>ester</td>
<td>O-C-O</td>
<td>R^- C-O-R'</td>
<td>CH$_3$COCH$_3$, methylethanoate</td>
</tr>
<tr>
<td>amine</td>
<td>$-\text{NH}_2$</td>
<td>R^- NH_2</td>
<td>CH$_3$CH$_2$CH$_2$NH$_2$, propanamine</td>
</tr>
<tr>
<td>amide</td>
<td>O-C-NH_2</td>
<td>R^- C-NH_2</td>
<td>CH$_3$CH$_2$CNH$_2$, propanamide</td>
</tr>
</tbody>
</table>
Functional Groups

Earlier in this chapter, you learned about organic compounds containing carbon and hydrogen atoms. The number of isomers possible for large hydrocarbons is enormous. Now imagine how many more isomers would be possible if we included atoms of oxygen, nitrogen, sulphur, or other elements!

In Books 1 & 2, you learned about the structures of alkenes, alkynes, and aromatic hydrocarbons, such as benzene. Groups of organic compounds like these are called _Functional_ groups.

A functional group is an atom, group of atoms, or organization of bonds in an organic molecule that react in a characteristic manner.

Organic compounds with the same functional group _react_ in a _similar_ manner.

Functional groups are identified by the placement of certain _atoms_ in a molecule, (or groups of atoms) _e.g._ more than 1.

NEW SHORTHAND:

Chemists use a shorthand to represent _carbon_ and _hydrogen_ atoms that are _not part_ of the functional group itself.

We use the symbol _R’_ to represent the hydrocarbon fragment of the organic molecule _not involved_ in the functional group.

R’ (called "r prime") may be used for a _different_ hydrocarbon fragment in the same molecule.

Alkyl Halides: R-X (where X = F, Cl, I, or Br)

Organic compounds containing _halogens_ are called _alkyl halides_.

They are named using the same rules you learned before, except that the halogen atom is named as a _branch_ group.

It is treated the same way as an _alkyl_ group was in branched alkanes, alkenes and alkynes.

The _prefixes_ to use for each element are:

F = _fluoro_ Cl = _chlooro_ Br = _bromo_ I = _iodo_

Problem 9. Name the halogenated compounds below.

a. $\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_3 \quad \text{Cl}$

b. $\text{CH}_3-\text{CH}_2\text{CH}_3 \quad \text{Br}$

c. $\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_3 \quad \text{F} \quad \text{Br}$

d. $\text{CH}_3-\text{CH} = \text{CH} = \text{CH}_2 \quad \text{Br}$

e. $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{Br}$

f. $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_3 \quad \text{F} \quad \text{Cl}$

- **Dichlorodifluoromethane**

- **2,3-dichloropentane**

- **2-bromo-4-chloropentane**

- **Difluoromethane**

- **1-bromohexane**

- **3-bromo-1-butene**

(No numbers needed... only 1 place they can be, order them by ABC's. Number based on double bond.)

- **1-bromohexane**

- **Dichlorodifluoromethane**
Problem 10. Write condensed structural formulas (such as those shown above) for the following:

a. tetrafluoromethane
\[\text{F} \quad \text{F} \quad \text{C} \quad \text{F}\]
\[\text{F} \quad \text{F} \quad \text{C} \quad \text{F}\]

b. 1,1,1-trichloroethane
\[\text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{C} \quad \text{C} \quad \text{CH}_3\]
\[\text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{C} \quad \text{C} \quad \text{CH}_3\]

c. chlorocyclopentane
\[\text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl}\]

1,3-difluoro-2-iodocyclohexane
\[\text{F} \quad \text{F} \quad \text{F} \quad \text{Cl} \quad \text{Cl} \quad \text{Cl}\]

Alcohols: R-OH
Organic compounds containing a \(-\text{OH}\) group attached to a carbon atom are called **alcohols**.

Do not confuse a hydroxyl group with a hydroxide ion. Compounds with a hydroxide ion are bases and are ionic.

Alcohols are **covalent** compounds that do not readily release the \(-\text{OH}\) group.

1. The parent chain must contain an atom **attached** to the \(-\text{OH}\) group.
2. The name of the parent chain ends with "-ol" instead of "-e."
3. Name and identify positions of the **branches** as usual.

Study the examples shown (right).

Note that the number indicating the position of the \(-\text{OH}\) group is not used if the chain is shorter than 3 carbons.

Why is that? **There is only 1 place for the \(-\text{OH}\) group to attach.**

Also you see that the \(-\text{OH}\) group is not included in the names of cyclic alcohols either.

Why not? **The "-OH" is always named as position 1.**
Problem 1. Name the alcohols given below.

a. \(\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_3 \)
 \(\text{OH} \)
 \(3\text{-pentanol} \)

b. \(\text{CH}_3-\text{CH}-\text{CH}_2-\text{CH}_3 \)
 \(\text{OH} \)
 \(2\text{-butanol} \)

c. \(\text{CH}_3-\text{CH}-\text{CH}_2-\text{CH}_3 \)
 \(\text{OH} \)
 \(\text{name C-H first as lowest #} \)
 \(3\text{-methyl-2-butanol} \)

d. \(\text{CH}_3-\text{CH}_2-\text{CH}-\text{CH}_2-\text{CH}_3 \)
 \(\text{OH} \)
 \(4,5\text{-dimethyl-2-hexanol} \)

e. \(\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3 \)
 \(\text{OH} \)
 \(4\text{-ethyl-1-hexanol} \)

f. \(\)
 \(\text{cyclobutanol} \)

g. \(\)
 \(2\text{-methylcyclohexanol} \)

h. \(\)
 \(3,4\text{-dimethylcyclopentanol} \)

i. \(\)
 \(2\text{-ethyl-3-methylcyclopropanol} \)

Problem 2. Draw the condensed structural formulas for the following.

a. 4,4\text{-dimethyl-2-hexanol}
 \(\text{CH}_3-\text{CH}-\text{CH}_2-\text{C}(\text{CH}_2-\text{CH}_3) \)
 \(\text{OH} \)

b. cyclopropanol
 \(\)

\(\text{OH} \)

\(\)

\(\)

\(\)

\(\)

c. 2,3\text{-diethylcyclohexanol}
 \(\)

\(\)

d. 3,4\text{-diethyl-2-heptanol}
 \(\text{CH}_2\text{CH}_3 \)
 \(\text{CH}_2\text{CH}_3 \)
 \(\text{OH} \)
 \(\text{CH}_3-\text{CH}-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3 \)
 \(\text{CH}_2\text{CH}_3 \)
Ethers are organic compounds in which two hydrocarbon fragments are attached by an oxygen atom.

<table>
<thead>
<tr>
<th>Ether Name</th>
<th>Application</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methoxyethane (commonly called dimethyl ether)</td>
<td>aerosol spray propellant</td>
<td></td>
</tr>
<tr>
<td>Ethoxyethane (commonly called diethyl ether)</td>
<td>early anesthetic</td>
<td></td>
</tr>
<tr>
<td>Methoxybenzene (commonly called methylphenyl ether)</td>
<td>anise (licorice) flavoring</td>
<td></td>
</tr>
</tbody>
</table>

Ethers are compounds which contain an oxygen atom bonded to two carbon atoms within the carbon chain. The functional group is the C–O–C arrangement found within the chain. When you look at an ether molecule, you will see an alkyl group on each side of the oxygen. For example, CH₃–CH₂–O–CH₃ has an ethyl group on the left of the oxygen atom and a methyl group on the right. The "common name" for this molecule is methyl ethyl ether. Although common names are still frequently used for ethers, we will stick to our "game plan" and use the IUPAC system.

In the IUPAC system, the larger of the two alkyl groups attached to the oxygen is considered to be the parent compound. For the ether mentioned in the last paragraph above, the parent compound would be ethane. The smaller alkyl group and the oxygen atom are considered to be a substituent group on the parent compound. The –O–CH₃ group is the substituent and it is called "methoxy." So the name of that ether is methoxyethane. If the substituent had been CH₃–CH₂–O–, it would have been called "ethoxy." Collectively these functional groups of the ethers are known as alkoxy groups. Only one modified rule needs to be mentioned here regarding the nomenclature of ethers.

Additional Rule for the Nomenclature of Ethers:

RULE: For ethers with parent chains that contain 3 or more carbon atoms, a number is included to indicate the position of the alkoxy group.

Study the examples below.

- CH₃–O–CH₃ methoxyethane
- CH₃–CH₂–O–CH₂–CH₃ ethoxyethane
- CH₃–O–CH₂–CH₂–CH₃ 1-methoxypropane
- CH₃–O–CH–CH₃ 2-methoxypropane

*When the chain is 3+ you must state the number where the "oxy" group joins. BUT # goes first.
Problem 3. Name the following ethers:

a. \(\text{CH}_3 - \text{O} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 \)
 1-methoxybutane

b. \(\text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{O} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 \)
 1-propoxypropane

c. \(\text{CH}_3 - \text{CH}_2 - \text{O} - \text{CH} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 \)
 2-ethoxypentane

d. methoxycyclohexane

e. 3-methoxycyclopentane

f. 4-ethoxynonane

g. 2-isopropoxybutane

Draw condensed structures for the following ethers:

- \(\text{C} = \text{C} \) always
- \(\text{carbon} \) 1 \(\rightarrow \) 2

Aldehyde

An aldehyde is an organic compound containing a carbonyl group at the end of a carbon chain. A carbonyl group is a carbon atom bonded to an oxygen atom. Aldehydes are used to produce dyes and organic acids. You may be familiar with formaldehyde, which is used as a biological preservative. Almond extract and some perfumes contain benzaldehyde.

Figure 8.2.2 Examples of aldehydes

Additional Rules for the Nomenclature of Aldehydes:

RULE 1: The longest continuous chain containing the aldehyde group is considered to be the parent compound.

RULE 2: The carbonyl carbon is part of the parent chain and is always considered to be in the #1 position.

RULE 3: The suffix "al" is added to the name of the parent compound to indicate that the compound is an aldehyde.

Note the examples of aldehydes shown below. You see that no number is needed to indicate the position of the functional group since it is always at position #1.

We name the branches "as normal"
Ketone

A ketone is an organic compound also containing a carbonyl group, but unlike an aldehyde, the carbonyl group of a ketone is NOT the end of the carbon chain.

Nail polish remover is a ketone commonly called acetone. Ketones are used as solvents and to make polymers and pharmaceuticals. A polymer is a very large molecule that is produced by linking together many smaller molecules.

Would it be possible for a ketone to have a name: "3-methyl-1-hexanone"?

The nomenclature of ketones also requires a few rule modifications.

Additional Rules for the Nomenclature of Ketones:

RULE 1: The longest continuous chain containing the ketone group is considered to be the parent compound.

RULE 2: A number is included before the name of the parent compound to indicate the position of the ketone group. The chain is always numbered so that the carbonyl carbon has the lowest possible number.

RULE 3: The suffix "one" is added to the name of the parent compound to indicate that the compound is a ketone.

For example:

![Examples of ketones](#)

Problem 4. Name the molecules shown below.

- a. CH₃-CH₂-CH₂-C(=O)-CH₃
- b. CH₃-C(=O)-CH₂-CH₃
- c. CH₃-CH₂-CH₂-CH₂-C(=O)-CH₃
- d. CH₃-C(=O)-CH₂-CH₂-C(=O)-CH₃
- e. CH₃-CH₂-CH₂-CH₂-C(=O)-CH₃

- 2-butanone
- 3-methylbutanal
- 2,3-dimethylpentanal
- 5,6-dimethylheptanone
- 7-methyl-4-octanone
Carboxylic Acid

A carboxylic acid is an organic compound containing a \(\text{carboxyl} \) \((-\text{COOH})\) group. These are sometimes called **organic acids** and are commonly found as food preservatives. White vinegar is a 5% solution of ethanoic acid, commonly called acetic acid.

Methanoic acid (commonly called formic acid) is the compound responsible for the sting of bee or red ant bites. Carboxylic acids usually have unpleasant odours.

Figure 8.2.4 Examples of carboxylic acids

(a) **ethanoic acid** (commonly called acetic acid)

(b) **methanoic acid** (commonly called formic acid)

Additional Rules for the Nomenclature of Carboxylic Acids:

RULE 1: The longest continuous chain containing the carboxyl group is considered to be the parent compound.

RULE 2: The carboxyl carbon is part of the parent chain and is always considered to be in the \#1 position.

RULE 3: The suffix "oic" is added to the name of the parent compound, and the word "acid" is added to the name.

For example:

- methanoic acid
- ethanoic acid
- 4-methylpentanoic acid

Acids also have common names. For example, ethanoic acid is also called acetic acid or "vinegar." We will work only with the IUPAC names.

As you attempt to name the carboxylic acids, note that the carboxyl group is written in shorthand as \(-\text{COOH}\) in the condensed structural formulas.

Problem 5. Name the organic acids below.

a. \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{COOH} \)

b. \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{COOH} \)

c. \(\text{CH}_3\text{CH}_2\text{CH}_2\text{COOH} \)

d. \(\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{COOH} \)

e. \(\text{CH}_3\text{CH}_2\text{COOH} \)

f. \(\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{COOH} \)

Name:

a) 4-**ethylhexanoic acid**

b) **hexanoic acid**

c) 3-**ethylhexanoic acid**

d) 4-7-dimethyloctanoic acid

e) 3-**methylbutanoic acid**

f) 4-**butyl-4-methyloctanoic acid**
Ester
An ester is an organic compound in which a \(-\text{COO}-\) group connects \(2\) other hydrocarbon fragments. Many esters have strong fruity odors and are used in perfumes and flavorings. DNA and some plastics and explosives contain ester groups.

Figure 8.2.5 Examples of esters

(a) octyl ethanoate (orange flavouring)
(b) ethyl butanoate (pineapple flavouring)

Esters are named by first naming the "R" group followed by the name of the acid portion. The suffix of the acid derivative is then changed from "-ic" to "-ate." For example, in the leftmost structure below, the parent acid is ethanoic acid. The "R" group is methyl, so the name of the ester is methyl ethanoate. In the center structure, the parent acid is butanoic, while the "R" group is ethyl, so the ester is named ethyl butanoate. Notice that the names of esters consist of two words, while the names of most of the previous types of compounds you have studied consisted of only one word.

![Structures](image)

Additional Rules for the Nomenclature of Esters:

RULE 1: Determine the name of the "R" group.

RULE 2: Place the name of the "R" group in front of the name of the parent acid, forming two words.

RULE 3: Determine the name of the parent acid, and change its suffix from "-ic" to "-ate." Drop the word "acid."

Problem 6. Name the esters below:

a. \(\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{C}=\text{O}\text{ CH}_2-\text{CH}_2-\text{CH}_3\) propyl butanoate
b. \(\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{C}=\text{O}\text{ CH}_3\) methyl pentanoate
c. \(\text{CH}_3-\text{CH}_2-\text{C}=\text{O}\text{ CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3\) butyl propanoate
d. \(\text{CH}_3\text{C}=\text{O}\text{ CH}_2-\text{CH}_3\) isopropyl propranoate
e. \(\text{CH}_3-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{C}=\text{O}\text{ CH}_2-\text{CH}_2-\text{CH}_3\) propyl pentanoate
f. \(\text{CH}_3\text{C}=\text{O}\text{ CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_3\) pentyl methanoate
Amines: R-NH₂ or R-NH-R’ or as in the diagram to the left

Amines are organic compounds containing only _____ bonds and _____ atoms attached to a carbon atom. Amines are used to produce dyes and drugs. For example, chlorpheniramine is used as an antihistamine. Ephedrine and phenylephrine are decongestants.

1. In primary amines one hydrogen atom in ammonia has been replaced by an alkyl group.
2. In secondary amines two hydrogen atoms in ammonia have been replaced by two alkyl groups.
3. In tertiary amines all three hydrogen atoms in ammonia have been replaced by three alkyl groups. Examine the examples below:

<table>
<thead>
<tr>
<th>H</th>
<th>CH₃—N—H</th>
<th>H</th>
<th>CH₃—CH₂—N—CH₂—CH₃</th>
<th>CH₃—CH—CH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Primary Amine</td>
<td></td>
<td>A Secondary Amine</td>
<td></td>
<td>A Tertiary Amine</td>
</tr>
</tbody>
</table>

penzylamine (common)
1-aminopentane (IUPAC)
a primary amine

methylpropylamine
a secondary amine

trimethylamine
a tertiary amine

Additional Rules for the Nomenclature of Amines:

RULE 1: In primary amines only, the IUPAC system treats the NH₂ (amino) group as a substituent group on the parent chain.

RULE 2: When using the common naming system, the names of the alkyl groups which are attached to the nitrogen atom are listed in alphabetical order and are attached to the suffix "amine" to form one word. Greek prefixes are used if specific alkyl groups occur more than once in a molecule. Name the amines below. Where two lines are present, give two names.

Problem 7. Name the amines below. Where two lines are present, give two names.

a. CH₃
 CH₃—N—CH₂—CH₃

b. H
 CH₃—N—CH₂—CH₃

c. CH₃—CH₂—CH₂—CH₂—CH₃
 CH₃—NH₂

d. CH₃—CH₂—CH₂—CH₂—CH₃
 H—N—CH₃

e. CH₃—CH₂—N—CH₂—CH₃

f. CH₃—CH₂—CH₃

f. CH₃—CH—CH₂—CH₂—CH₂—CH₂—NH₂

h. NH₂
 CH₃—CH—CH₃

i. NH₂
 CH₃—NH₂
Amides

Organic compounds containing a nitrogen atom bonded to a carbonyl group are called amides. Amides are found in plastics, rubber, inks, and cosmetics. Amides are also used to make nylon and Kevlar. The pain killer acetaminophen is an amide. An amide group links amino acids together in the peptide chains that make up proteins. You do not need to know how to name amides. Figure 8.2.7 shows two examples of amides.

![Figure 8.2.7 Examples of amides](image)

You are already familiar with the carboxyl group which is the functional group of a carboxylic acid. If you replace the hydroxy group (–OH) in the carboxyl group with an amino group (–NH₂), you get the functional group of a class of organic compounds known as primary amides.

![Functional groups of carboxyl and amide](image)

There are three classes of amides just as there were for amines, but we will consider only primary amides, and we will name them according to the IUPAC system. Amides are considered to be derivatives of carboxylic acids, which means they are formed from acids. Thus, the amides are named as derivatives of acids. To name an amide, simply identify the name of the organic acid from which the amide was derived, and change the “–olic” suffix in the acid’s name to “–amide.” The examples of amides shown below were derived from ethanoic, propanoic, and butanoic acids.

![Examples of amides](image)

Additional Rules for the Nomenclature of Amides:

RULE 1: Identify the carboxylic acid from which the amide was derived and change the suffix of the acid name from “–olic” to “–amide,” and drop the word acid.

RULE 2: Add the names of any alkyl groups to the name of the parent compound, forming one word.

Problem 8. Name the amides shown below. Note that the amide functional group is written in shorthand as CONH₂.

a. HCONH₂

b. CH₃–CH₂–CH₂–CONH₂

c. CH₂–CH₃

CH₃–CH₂–CH–CH₂–CONH₂

d. CH₃–C–CH₂–CONH₂

CH₃

e. CH₂–CH₃

CH₃–CH₂–CH–CH₂–CH–CONH₂

f. CH₃

CH₃–CH–CH₂–CH₂–CONH₂
Table 8.2.3 summarizes what you have learned about the functional groups described in this booklet.

Table 8.2.3 Functional groups

<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Classification of Organic Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H} \quad \text{H} \quad \text{H})</td>
<td>alkene</td>
</tr>
<tr>
<td>(\text{H} \quad \text{C} = \text{C})</td>
<td>alkane</td>
</tr>
<tr>
<td>(\text{C} \equiv \text{C})</td>
<td>alkyne</td>
</tr>
<tr>
<td>(\text{H} \quad \text{C} = \text{C} \quad \text{H})</td>
<td>aromatic hydrocarbon</td>
</tr>
<tr>
<td>(\text{C} \quad \text{H})</td>
<td></td>
</tr>
<tr>
<td>(\text{X} \quad \text{C})</td>
<td>alkyl halide</td>
</tr>
<tr>
<td>(\text{O} \quad \text{H} \quad \text{C})</td>
<td>alcohol</td>
</tr>
<tr>
<td>(\text{O} \quad \text{C} \quad \text{O} \quad \text{C})</td>
<td>ether</td>
</tr>
<tr>
<td>(\text{O} \quad \text{C} = \text{H})</td>
<td>aldehyde</td>
</tr>
<tr>
<td>(\text{O} \quad \text{C})</td>
<td>ketone</td>
</tr>
<tr>
<td>(\text{O} \quad \text{C} \equiv \text{O})</td>
<td>carboxylic acid</td>
</tr>
<tr>
<td>(\text{O} \quad \text{C} \equiv \text{O} \quad \text{C})</td>
<td>ester</td>
</tr>
<tr>
<td>(\text{NH}_2 \quad \text{C})</td>
<td>amine</td>
</tr>
<tr>
<td>(\text{O} \quad \text{C} \equiv \text{NH}_2)</td>
<td>amide</td>
</tr>
</tbody>
</table>
Activity: Recognizing Functional Groups

Question
Can you classify an organic compound according to its functional group?

Background
The reactivity of an organic compound depends largely on the presence of its functional group. You can classify organic compounds by their functional group by carefully examining which groups of atoms are present on a molecule. You should be able to recognize the following types of functional groups in the following organic compounds: alkane, alkene, alkyne, cycloalkane, aromatic, alkyl halide, alcohol, ether, amine, amide, aldehyde, ketone, carboxylic acid, and ester.

Procedure
1. Work with a partner.
2. Copy the following structure diagrams onto a piece of paper.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Continued on next page
3. Cut the paper into 10 squares and place each square face down on the table.

4. Take turns with your partner. Turn over one piece of paper, and state which functional groups are represented. Some examples may include more than one functional group. If your partner agrees, you get to keep that piece of paper. If your partner disagrees, place that piece of paper to the side.

Results and Discussion

1. Once you have completed all 10 squares, count how many questions you answered correctly. _______________

2. For questions where you disagreed, re-examine the question and try to come to an agreement about the functional group. If you cannot agree, ask a nearby pair of students.

3. You know how to name some of these compounds. List the names below of as many as you can and compare your answers to those of a nearby pair of students.