September 10, 2017 1:39 PM

Math 10

Unit 1: Real Numbers and Radicals

Lesson 1: pages 1-7

MS. A Sept 13/17

REAL NUMBERS (R)

(can be placed on a number line)

RATIONAL NUMBERS (Q)

(CAN BE WRITTEN as fraction)

- Decimals DO terminate

or ropeat

ex: 7,3.6,5, =

Three Subsets:

000 () INTEWERS { ... 3, 2, 1,0,1,25

(a) {0,1,3,3,...}

(1,2,3,...)

IRRATIONAL NUMBERS (Q

( CANNOT BE WRITTEN OS FACTION)

- Decimals DO NOT terminate

or repeat

ex: TT, JJ, 3.62489....

(-5) Q, R

(8) N, W, Z,Q,R

Example: Place the following numbers on the number line below:

A B C D E F 
$$\overline{Q}$$
  $\overline{Q}$   $\overline{H}$   $\pi$  bytton  $\frac{6}{2}$   $\overline{Q}$   $-5.\overline{6}$   $\sqrt{20}$   $\overline{Q}$   $\frac{0}{12}$   $10.3\overline{25}$   $\sqrt{4}$   $\sqrt{4913}$   $\sqrt{4913}$   $\sqrt{3}\pi$   $\sqrt{4913}$   $\sqrt{4913}$ 



Practice Work: pages 4-7 (including 7)

| Vare | Terms |
|------|-------|
| Kev  | Terms |
|      |       |

|                                  | Key Terms                                                                                                  |                                  |
|----------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------|
| Term                             | Definition                                                                                                 | Example                          |
| Real Number (R)                  | All numbers that can be placed on a number line                                                            | $1, 2.\overline{5}, \sqrt{2}$    |
| Rational Number (Q)              | Numbers that can be written                                                                                | 5, 2.13, ½                       |
| Irrational Number $(ar Q)$       | # cannot be written as fraction,                                                                           | $\sqrt{2}$ , $\pi$ , $\sqrt{3}$  |
| Integer (Z)                      | All positive inegative #5                                                                                  | -2,-1,0,1,2                      |
| Whole Number (W)                 | and zero. All positive numbers and zero                                                                    | 0,1,2,3                          |
| Natural Number (N)               | (no decimal) All positive numbersabut NOT                                                                  | 1,2,3                            |
| Factor                           | Numbers vou can multiply tog. to get and A method to obtain the prime                                      | mer # a factor of 6 = 2          |
| Factor Tree                      | factors of a number using a                                                                                | 2 4 = 2 × 2<br>2 2 4 = 2 z       |
| Prime Number                     | tree snaperform.  A # only divisible by 2 and 11501f.                                                      | 27,3,11                          |
| Prime Factorization              | The act of writing a number (or an expression) as a product of PRIME #s                                    | 24 3 × 23 × 23 × 23 ×            |
| GCF .                            | "Greatest common factor" = the largest # that divides evenly into 2 or more #5                             | GCF OF 20 and 16:4               |
| Multiple                         | the result of multiplying a # by                                                                           | First 3 multiples of 8: 8,16,24  |
| LCM                              | "Least Common Multiple" the smallest multiple shared between 2 or more #                                   | 6 ( 0.00)                        |
| Radical                          | Name given to square roots, cube                                                                           | √36, <sup>3</sup> √49            |
| Index                            | Represents what root the radical                                                                           | index X                          |
| Root<br>Square root<br>Cube root | Finding theroot savare 1901, cube 1001s means what number will multip itself 2 or 3 times to getlement the | 1 C-11 - 0 10 - 1 - 1 - 1 - 0 17 |
| Power                            | designated# I an expression made up of an exponent & base                                                  | base 34-exponent & power         |
| Entire Radical                   | a radical where all nunverter are underneath the radical sign                                              | √ <del>5</del>                   |
| Mixed Radical                    | A radical with an integer outside of the radical sigh (left).                                              | 2√15                             |
|                                  | /                                                                                                          | 93                               |

A Tells you what

A number made up of a rational number and an irrational #.

mind of root

# The Real Number System

Real numbers are the set of numbers that we can place on the number line.

Real numbers may be positive, negative, decimals that repeat, decimals that stop, decimals that don't repeat or stop, fractions, square roots, cube roots, other roots. Most numbers you encounter in high school math will be real numbers.

The square root of a negative number is an example of a number that does not belong to the Real Numbers.

There are 5 subsets we will consider.

### Real Numbers

### Rational Numbers (Q)

Numbers that can be written in the form  $\frac{m}{n}$  where m and n are both integers and n is not 0.

Rational numbers will be terminating or repeating decimals.

Eg. 5, -2. 3, 
$$\frac{4}{3}$$
,  $2\frac{3}{8}$ 

| Natural (N) | Whole (W)     | <u>Integers</u> (Z)      |
|-------------|---------------|--------------------------|
| {1, 2, 3,}  | {0, 1, 2, 3,} | {,-3,-2,-1, 0, 1, 2, 3,} |

# Irrational Numbers $(\bar{Q})$

**Cannot** be written as  $\frac{m}{n}$ . Decimals will not repeat, will not terminate.

Eg.  $\sqrt{3}$ ,  $\sqrt{7}$ ,  $\pi$ , 53.123423656787659...

Name all of the sets to which each of the following belong?

| Name an of the sets to which each | in of the following belong?                      |                       |
|-----------------------------------|--------------------------------------------------|-----------------------|
| 1. 8                              | 2. 4/5                                           | 3. $\frac{15}{5}$ = 3 |
| Q, Z, W, N                        | Q                                                | Q , Z, W, N           |
| 4. √ <del>7</del>                 | 5. √0.5 O                                        | 6. 12.34              |
| Q                                 | , , ,                                            | Q                     |
| 7. —17                            | 8. $-\left(\frac{2}{3}\right)^3 = -\frac{8}{27}$ | 9. 2.7328769564923    |
| Q,Z                               | 27                                               | Q                     |

Write each of the following Real Numbers in decimal form. Round to the nearest thousandth if necessary. Label each as Rational or Irrational.

| 10. $\frac{2}{9}$ Q   |   | $-3\frac{3}{7}$ Q      | 12. √8 Q             |
|-----------------------|---|------------------------|----------------------|
| 0.222                 |   | -3.429                 | 2.828                |
| 13. <sup>3</sup> √9 Q |   | 14. <del>∜</del> 256 Q | 15. <del>∜25</del> Q |
| 2.080                 | A | 4                      | 1.904                |

16. Fill in the following diagram illustrating the relationship among the subsets of the real number system. (Use descriptions on previous page)



- A Real Numbers
- B Whole Numbers
- c Natural Numbers
- p Rational Numbers
- E Irrahanal Numbers
- Fintegers

- 17. Place the following numbers into the appropriate set, rational or irrational.
  - 5,  $\sqrt{2}$ ,  $2.\overline{13}$ ,  $\sqrt{16}$ ,  $\frac{1}{2}$ ,  $5.1367845 \dots$ ,  $\frac{\sqrt{7}}{2}$ ,  $\sqrt[3]{8}$ ,  $\sqrt[3]{25}$



★ 18. Which of the following is a rational number?



- 20. To what sets of numbers does -4 belong?
  - a, natural and whole
    b. irrational and real
    c, integer and whole
    d. rational and integer



19. Which of the following is an irrational number?

- 21. To what sets of numbers does  $-\frac{4}{3}$  belong?
  - a. natural and whole b. irrational and real c. integer and whole
  - d. rational and real

| Your notes here | Your | notes | here |
|-----------------|------|-------|------|
|-----------------|------|-------|------|

Page 6 | Real Numbers Key



## The Real Number Line



All real numbers can be placed on the number line. We could never list them all, but they all have a place.

### Estimation:

It is important to be able to estimate the value of an irrational number. It is one tool that allows us to check the validity of our answers.

Without using a calculator, estimate the value of each of the following irrational numbers.

| Show your steps!                              |                                       |                                                  |
|-----------------------------------------------|---------------------------------------|--------------------------------------------------|
| 22. $\sqrt{7}$                                | 23. $\sqrt{14}$                       | 24. √75                                          |
| Find the perfect squares on either side of 7. | square 1001-3=9                       | square root 8 = 64                               |
| $\rightarrow$ 4 and 9                         | square root 4:16                      | square root 9:81                                 |
| Square root $4 = 2$                           | 3000164001710                         |                                                  |
| Square root 9 = 3                             | √14 ≈ 3.7                             | √75 ≈ 8.7                                        |
| Guess & Check:<br>2.6 x 2.6 =6.76             | 3.7×3.7: 13.69                        | 8.6×8.6=73.96                                    |
| $2.7 \times 2.7 = 7.29$                       |                                       | 8.7 × 8.7= 75.69                                 |
| $\therefore \sqrt{7}$ is about 2.6            |                                       | 71, 7 == 7                                       |
| 25. <sup>3</sup> √11                          | 26. <sup>3</sup> √90                  | 27. <sup>3</sup> √150                            |
| cube root 2 = 8                               | Cube root 64:4                        | Cube 100+ 125:5                                  |
| cube root 3 = 27                              | Cube root 1250                        |                                                  |
| ₹11 ≈ 2.2<br>22×22×22:10-6                    | 4.5×4.5×4.5 4.5×4.5×4.5               | $3\sqrt{150} \approx 5.3$ the number line below. |
| 28. Place the corresponding le                | tter of the following Real Numbers on | the number line below.                           |



# Lesson 2 (pages 8-11)

September 10, 2017

7:35 PM



(1) pgs 4-7 (2) Mg Review

Math 10

Unit 1: Real Numbers and Radicals

Lesson 2: pages 8-11

A. Factor (noun): divides evenly

Example: List the factors of 24.

1,2,3,4,6,8,12,24

B. Factor (verb): Write as a product (of prime #5)

Example: Factor 24

24 = 2 x 3 x 2x  $= 2^3 \times 3$ 

st Common Factor (GCF) [think: largest into all]

TO FIND GCF: List the primes that are in both numbers and multiply them.

Example #1: Find the GCF of 36 & 126.



 $Q(F = 2 \times 3 \times 3)$ 

- (1) Draw tree Liagrams
  (2) Circle primes common
  to ALL trees
- 3 Multiply circled #5 tog ether

Example #2: Find the GCF of 42



acr = 2x3

### D. Lowest Common Multiple (LCM)

Example #1: List the first 6 multiples of 20: 30, 40, 60, 80, 100, 100

LCM of 20 & 24 is the lowest number that they both divide evenly into.

TO FIND LCM: List the largest power of each prime number & multiply them.



= 1504

PW: pgs. 8-11

# Factors, Factoring, and the Greatest Common Factor

We often need to find factors and multiples of integers and whole numbers to perform other operations.

For example, we will need to find common multiples to add or subtract fractions. For example, we will need to find common factors to reduce fractions.

#### Factor: (NOUN)

Factors of 20 are {1,2,4,5,10,20} because 20 can be evenly divided by each of these numbers.

Factors of 36 are {1,2,3,4,6,9,12,18,36}

Factors of 198 are { 1,2,3,6,9,11,18,22,33,66,99,198}

Use division to find factors of a number. Guess and check is a valuable strategy for numbers you are unsure of.

To Factor: (VERB) The act of writing a number (or an expression) as a product.

To factor the number 20 we could write  $2 \times 10$  or  $4 \times 5$  or  $1 \times 20$  or  $2 \times 2 \times 5$  or  $2^2 \times 5$ . When asked to factor a number it is most commonly accepted to write as a product of prime factors.

<u>Use powers</u> where appropriate.

Eg. 
$$20 = 2^2 \times 5$$

Eg. 
$$36 = 2^2 \times 3^2$$
 Eg.  $198 = 2 \times 3^2 \times 11$ 

A factor tree can help you "factor" a number.



Prime:

When a number is only divisible by 1 and itself, it is considered a prime number.

Write each of the following numbers as a product of their prime factors.





Write each of the following numbers as a product of their prime factors.

| wifite each of the following number | ers as a product of their prime facto | rs.     |             |
|-------------------------------------|---------------------------------------|---------|-------------|
| 32. 324                             | 33. 1200                              | 34. 800 |             |
| / \                                 | /\                                    | /\      |             |
| 162 (2)                             | 400 ③                                 | 400 (2) |             |
| / \                                 | / \                                   | 1       |             |
| 81 0                                | 200 ②                                 | 200 0   |             |
| 11                                  | 100 2                                 | ^^      |             |
| 27 5                                | 100                                   | 100 4   | Ti.         |
| 1\ 324:34 x 2 <sup>2</sup>          | 50(2)                                 | 5060    |             |
| 3) 9                                |                                       | 50 0    | 800:52 x 25 |
|                                     | 25 (2)                                | 250     | 800-5-7-2   |
| (3) (3)                             |                                       | 20      |             |
| -                                   | (35) 1200 = 5 <sup>2</sup> × 3        | x 242   | 10          |
| <b>Greatest Common Factor</b>       | . 00 1000                             | - V     |             |

At times it is important to find the largest number that divides evenly into two or more numbers...the **Greatest Common Factor (GCF)**.

|                                 |             | 20     | 36-3 12     |
|---------------------------------|-------------|--------|-------------|
| Challenge:                      | 36          | 148    | 198=11×32×2 |
| 35. Find the GCF of 36 and 198. | 2 - 10 2 18 | 2 99   |             |
| GCF: 18 36:                     | 2:18        | 100    | 2 0 [0]     |
|                                 | :2:18       | 9 49   | 3 cx 2 = 18 |
|                                 | (3)(3)      | (a)(3) |             |

| Challenge: 36. Find the GCF of 80, 96 and 160. | 80 = 5 × 24           | 96 = 3×25    | 160=5×25    |
|------------------------------------------------|-----------------------|--------------|-------------|
| 80 - 40, 20,16                                 | GCF = 16 8 10 4 0 6 6 | Q 24<br>Q 24 | 9 20 4 10 2 |
| 24:16                                          | 00                    | (a) (a)      | <u> </u>    |

| DOING HOLES                             |                                         |
|-----------------------------------------|-----------------------------------------|
|                                         |                                         |
| *************************************** | *************************************** |
|                                         |                                         |
|                                         |                                         |
|                                         |                                         |
| *************************************** |                                         |
|                                         |                                         |

Find the GCF of each set of numbers.

| Find the GCF of each set of hu          | illibers.               |                                                                     | * 8%     |
|-----------------------------------------|-------------------------|---------------------------------------------------------------------|----------|
| 37. 36, 198                             | 38. 98, 28              | 39. 80, 96, 160                                                     | jin li   |
| $36 = 2^2 \times 3^2$                   |                         | $80 = 2^4 \times 5$                                                 |          |
| $198 = 2 \times 3^2 \times 11$          | 98 28                   | $96 = 2^5 \times 3$                                                 |          |
|                                         |                         | $160 = 2^5 \times 5$                                                |          |
| Prime factors in common                 | 249 214                 | *                                                                   |          |
| •                                       | Q 44 9 /                | Prime factors in common                                             |          |
| are 2 and $3^2$ .                       | 00 0                    | are 24.                                                             |          |
| COT (CO × 22 - 40                       | 00.532 × 2              |                                                                     |          |
| GCF is 2 x 3 <sup>2</sup> = 18          | 98:72 x 2               | GCF is 24=16                                                        |          |
|                                         | 28=7×22                 | 90, 10 2 20                                                         |          |
|                                         | * 7 ×2:14               | (Alternate method:                                                  |          |
| (Alternate method:                      |                         | i e                                                                 |          |
| Líst all factorschoose                  | GCF=14                  | Líst all factorschoose                                              |          |
| 1                                       |                         | largest in both lists.)                                             |          |
| largest in both lists.)                 |                         | 9                                                                   |          |
| *************************************** | 426 100 725 1470        | 40 504 1050 1206                                                    |          |
| 40. 24, 108                             | 41. 126, 189, 735, 1470 | 42. 504, 1050, 1386<br>504=7×3 <sup>2</sup> ×2 <sup>3</sup> 1050=7× | 52 × 3×2 |
| $108 = 3^3 \times 2^2$                  | 126=7×32×2 189=7×3      | 504=7×32×23 1050=1×                                                 |          |
|                                         | (A) 17                  | 2) 252 105 10                                                       |          |
| 54 24 = 31.23                           | (3) 63                  | 10 10                                                               |          |
| 54                                      |                         | 126 (2) 5 21 (19)                                                   |          |
| 100                                     | 79                      | / AB                                                                |          |
| 1 1 1                                   | 333                     | 0 63                                                                |          |
| 66                                      | 735=72×5×3              | 1386 = 77 × 7 × 32 × 2                                              |          |
|                                         | 1470 = 72               | *5 ×3×2 0                                                           | 4        |
| 3 7 00                                  | 735                     | 3 462                                                               | 7 . 7    |
| 60                                      | 10000                   |                                                                     | 3 × 2=   |
| GCF=3×                                  | 2 = 12 6 147            | 2319 42                                                             |          |
| GUI                                     | 7 ×3 = 21 34            | 9 3 77                                                              | = 112    |
| Multiples and Least Com                 | mon Multiple GCF-27     | a Ga GC                                                             | F=42     |
|                                         |                         | 1//(14)                                                             |          |

Challenge

43. Find the first seven multiples of 8.

Challenge

44. Find the least common multiple of 8 and 28.

28, 56

LCM = 56



### Multiples of a number

Multiples of a number are found by multiplying that number by {1,2,3,4,5,...}.

Find the first five multiples of each of the following numbers.

|                  | 7/3/2/15 (1/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3 |                |
|------------------|---------------------------------------------------|----------------|
| 45. 8            | 46. 28                                            | 47. 12         |
| 8,16,24,32,40,43 | 28, 56, 84, 112, 140                              | 12,24,36,48,60 |
|                  |                                                   |                |

| Find the least common multiple of e                                             | ach of the following sets of numbers.                                         |                                   |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------|
| 48. 8,28                                                                        | (49,) 72,90                                                                   | (50.)                             |
| $8 = 2^3$<br>$28 = 2^2 \times 7$<br>Look for largest power of each prime factor | 72 $3^2 \times 2^3$ 36 ① $90 = 5 \times 3^2 \times 2$ ① 18 30 ③               | 2:                                |
| In this case, 23 and 7.<br>LCM = 23 x 7<br>LCM = 56                             | 35 50<br>32 × 23 × 5. = 360<br>1 LCM = 360                                    | 55 /\<br>(1) (2) (1)              |
| 51. 8; 12, 22<br>8 = 2 <sup>3</sup>   12=3×2 <sup>2</sup>   22:11×2             | <b>52. 4, 15, 25</b><br>4 = 2 <sup>2</sup>   15 = 5 × 3   25 = 5 <sup>2</sup> | <b>53.</b><br>18 : 3 <sup>2</sup> |





54. Use the least common multiple of 2, 6, and 8 to add:

$$\frac{3}{8} + \frac{5}{6} + \frac{1}{2}$$

$$\frac{9}{24} + \frac{20}{24} + \frac{12}{24}$$
 $\star = \frac{41}{24} \text{ or } 1\frac{17}{24}$ 

- - 55. Use the least common multiple of 2, 5, and 7 to evaluate:

$$\frac{3}{5} - \frac{2}{7} + \frac{3}{2}$$

$$\frac{47}{70} - \frac{20}{70} + \frac{103}{70}$$

- - 56. Use the least common multiple of 3, 8, and 9 to evaluate:

valuate: 
$$\frac{7}{9} = \frac{1}{3} = \frac{1}{8}$$

$$3:3$$
 $9:3^2:2^3 \times 3^2$ 
 $8:2^3$ 
 $72$ 

$$\frac{50}{72} - \frac{24}{72} - \frac{9}{72}$$

# Unit 1: Real Numbers and Radicals

Lesson 3: pages 12-17

MS. A Sept 19/17

NO WAY

TO WET NEGATIVE

(1)  $\sqrt{4+5} = \sqrt{9} = 3$ 

2. 
$$\sqrt{2+2\times7} = \sqrt{3+14} = \sqrt{16} \leq 4$$

$$\sqrt[3]{\sqrt{\frac{49}{81}}} = \sqrt{\frac{70}{181}} = \frac{7}{9}$$

 $4.\sqrt[3]{-576} = NO SOWTION$ if even # (Error) con't root regative  $5.\sqrt[3]{-512} = -8$ 

6.  $\sqrt{2 \cdot 2 \cdot 3 \cdot 3 \cdot 11 \cdot 11 \cdot 11 \cdot 11} = \sqrt{537}$  076

7.  $\sqrt{25x^2} = \sqrt{55} \cdot \sqrt[3]{x^2}$  $= \sqrt[5]{x}$ 

 $8. \sqrt{100x^6} = \sqrt{100} \cdot \sqrt[3]{x^6}$  $9.927x^{6} = 3.73 \times 3.73$   $9.327x^{6} = 3.737 \times 3.735$ 

10. Use the prime factorization of 1728 to determine if it is a perfect cube. If so, determine  $\sqrt[3]{1728}$ .

= 726



perfect cube! 4 ALL factors go in a group of 3

3/1798 = [13]

pages 12-17

### Radicals:

Radicals are the name given to square roots, cube roots, quartic roots, etc.

$$\sqrt[n]{\chi}$$

### The parts of a radical:

Radical sign Index  $\sqrt{\phantom{a}}$ 

(Operations under the radical are evaluated as if inside brackets.) (tells us what type of root we are looking for, if blank...index is 2)

Radicand

n

(the number to be "rooted")



### **Square Roots**

Square root of 81 looks like  $\sqrt{81}$ . It means to find what value must be multiplied by itself twice to obtain the number we began with.

$$\sqrt{81}$$
 we think ...  $81 = 9 \times 9 \rightarrow \sqrt{81} = 9$ 

$$\sqrt{a^4}$$
 we think ... $a^4 = a^2 \times a^2 \rightarrow \sqrt{a^4} \stackrel{\text{O}}{=} a^2$ 

PERFECT SQUARE NUMBER: A number that can be written as a product of two equal factors.

 $81 = 9 \times 9$  } 81 is a perfect square. Its square root is 9.

First 15 Perfect Square Numbers:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, ...

Your notes here...

Operations inside a √ must be considered as if they were inside brackets...do them

Evaluate the following.

| 57. | $\sqrt{49}$ |
|-----|-------------|
|     |             |

7

0

0

V(25 x -1) = N25 x N-1

59. 
$$-\sqrt{36}$$

-6

#### 60. Finish the statement:

I know that  $\sqrt{16} = 4$  because...

4×4=16

 $6 \times \sqrt{-1} = 5 i$ 61. Finish the statement:

I know that  $\sqrt{\frac{64}{81}} = \frac{8}{9}$  because...

$$\sqrt{8}$$
 8×8=64  $\sqrt{81}$  9×9=81

62. Finish the statement:

I know that  $\sqrt{-36} \neq -6$  because...  $-6 \times -6 = +36$ 

11

64. 
$$\sqrt{45-20}$$

$$\sqrt{25} = 5$$

65.  $2\sqrt{40-(-9)}$ 

66. Simplify. 
$$\sqrt{x^2}$$

X

67. Simplify. 
$$\sqrt{4x^2}$$

2)

## 68. Simplify. $\sqrt{16x^4}$

 $4\chi^2$ 

#### **Cube Roots:**

PERFECT CUBE NUMBER: A number that can be written as a product of three equal factors.

Cube root of 64 looks like  $\sqrt[3]{64}$ .

The index is 3. So we need to multiply our answer by itself 3 times to obtain 64.  $4 \times 4 \times 4 = 64$ 

First 10 Perfect Cube Numbers: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, ... Evaluate or simplify the following. How could a factor tree 70. <sup>3</sup>√8 = 2 69. <sup>3</sup>√8 be used to help find Explain what the small 3 in this  $\sqrt[3]{125}$ ? problem means. Do a factor tree for It's asking for the 125 and their should be cube root = the 5 x 5 x 5 72. Evaluate √125. - 5 answer will multiply itself 3 times to obtain 8+(2). 74. <sup>3</sup>√1000 = 10 75. <sup>3</sup>√-8 = -? 78. <del>3√−216 = −</del>6 77. <sup>3</sup>√343 = 7 76. Show how prime factorization can be used to evaluate  $\sqrt[3]{27}$ . Find the prime factors of 27 and there should be 3 x 3 x 3 79.  $\sqrt[3]{27} \times \sqrt{20 \times 5}$ 80.  $\sqrt[3]{64} \times \sqrt{45-20}$ 3 × 10 = 30 83.  $\sqrt[3]{a^6} = 0$ 

### Other Roots.

85. How does <sup>6</sup>√729 differ from <sup>3</sup>√729? Explain, do not simply evaluate.

86. Evaluate if possible.  $\sqrt[4]{16} = 2$ 

87. Evaluate if possible.  $\sqrt[4]{-16}$ . =  $\sqrt[4]{-1} \times \sqrt[4]{16}$   $\stackrel{?}{\iota} \times 2$  NOT POSSIBLE

equal numbers to equal 729

 $\sqrt[3]{729}$  is looking for a product of 3 equal #5 to equal 729.

- 89. Evaluate if possible.  $\sqrt[4]{81}$ .
- 90. Evaluate if possible.  $\sqrt[6]{64}$ .

2

d a

91. Evaluate if possible.  $\sqrt[3]{24-16}$ .

3/8 = 2

92. Evaluate if possible.  $\sqrt[4]{2(32-24)}$ .

→ ¥2(8) → 4√16 = 2 93. Evaluate if possible.  $\sqrt[3]{4(5-3)}$ .

→ 3/4(2) → 3/8 = 2

Using a calculator, evaluate the following to two decimal places.

94.  $\sqrt[3]{27} - \sqrt[5]{27}$ 

3 - 1.93

95.  $2\sqrt{10} + \sqrt[4]{64}$ 

6.32+2.83

- 9.15

96.  $\sqrt[5]{-32} - \sqrt[4]{16}$ 

[-4,00]

97. 19 – <del>∛</del>18

19-2-62

98.  $\frac{\sqrt{12}-\sqrt[3]{7}}{2}$ 

· 3.46-1.91

→ <u>1.55</u> <u>.</u> 0.78

99.  $\frac{\sqrt[3]{9}-\sqrt[3]{27}}{}$ 

 $\begin{array}{c} \rightarrow 2.08 - 3 \\ \hline -0.92 = -0.31 \end{array}$ 

Describe the difference between radicals that are rational numbers and those that are irrational numbers.

rational

irrational

V16

113

All radicals that equal arational are perfect squares, cubes, etc. All radicals that equal irrational #5

Updated June 2013

| Evaluate of simplify the folio                                                            |                                                                                    |                                                                                               |
|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 101.<br>125 = 53<br>(S) 25<br>(S) (S) (S) (S) (S) (S) (S) (S) (S) (S)                     | 102. $\sqrt{2(15 - (-3))}$ $\sqrt{2(18)}$ $\sqrt{36}$ = 6                          | 103. $\sqrt{\sqrt{16}}$ $\sqrt{4} = 2$                                                        |
| 104.<br>√0.16<br>0.4                                                                      | 105.                                                                               | 106. $3\sqrt{25} - 4\sqrt[3]{8}$ $3(5) - 4(2)$ $15 - 8$ $= 7$                                 |
| 107. $\sqrt{\frac{1}{4}}$ $\sqrt{0.25}:$ $0.5 \Rightarrow \sqrt{\frac{1}{2}} \Rightarrow$ | $ \sqrt{\frac{16}{49}} $                                                           | 109. $\sqrt{\frac{100}{400}}$ $\frac{10}{20} = \frac{1}{2}$                                   |
| $\frac{2\sqrt{a^4}}{\sqrt{a^4}}$                                                          | 111. $\sqrt[3]{-x^6}$ $\sqrt[3]{(-1)} \times \sqrt[3]{x^6}$ $-1 \times x^2$ $-x^2$ | 112. $\sqrt[3]{8x^3}$ $\sqrt[3]{8} \times \sqrt[3]{\chi^3}$ $\sqrt[2]{\chi}$ $\sqrt[2]{\chi}$ |

Evaluate or simplify the following.

113.  $\sqrt{5^2}$   $\sqrt{25} = \sqrt{5}$ 

(√5)<sup>2</sup>

114.

115.  $-\sqrt{(-5)^2} - \sqrt{25} = -5$ 

116.  $(\sqrt{49} - \sqrt{64})^3$   $(7 - 8)^3$ 

 $\sqrt{\sqrt{16}}$   $\sqrt{4}$ 120.

118. What would be the side length of a square with an area of 1.44 cm<sup>2</sup>?

1-1-2 cm

 $\left(\sqrt[4]{16}\right)^3$ 

(2)3 = 8

√-32

-2

121. <sup>8</sup>√256

Z

122. Use the prime factors of 324 to determine if 324 is a perfect square. If so, find  $\sqrt{324}$ .

Answer:

119.

 $324 = 2^2 \times 3^4$  if fully factored

- $\therefore \sqrt{324} = \sqrt{2 \times 2 \times 3^2 \times 3^2}$
- $\therefore \sqrt{324} = \sqrt{(2 \times 3^2) \times (2 \times 3^2)}$
- $\therefore \sqrt{324} = (2 \times 3^2)$
- $\therefore \sqrt{324} = 18$

YES

123. Use the prime factors of 576 to determine if 576 is a perfect square. If so, find  $\sqrt{576}$ .

 $\sqrt{576} = \sqrt{3^2 \times 26}$   $-\sqrt{576} = \sqrt{(3 \times 2^3)} \times (3 \times 2^3)$   $= \sqrt{576} = (3 \times 2^3)$   $= \sqrt{576} = 24$ YES

5832

124. Use the prime factors of 1728 to determine if it is a perfect cube. If so, find  $\sqrt[3]{1728}$ .

125. Use the prime factors of 5832 to determine if it is a perfect cube. If so, find  $\sqrt[3]{5832}$ .

1728 =  $3^{3} \times 2^{6}$ 4 432  $\sqrt[3]{1728} : \sqrt[3]{3} \times 2^{6}$ © © 4 108  $\sqrt[3]{1728} : \sqrt[3]{3} \times 2^{2}) \times (3 \times 2^{2}) \times (3 \times 2^{2})$ © © 54  $\sqrt[3]{1728} : \sqrt[3]{2} \times 2^{2} \times (3 \times 2^{2}) \times (3 \times 2^{2})$ ©  $\sqrt[3]{9} \sqrt[3]{1728} : \sqrt[3]{5832} : \sqrt[3]{5832}$ 

 $\sqrt{5832} = \sqrt[3]{3^6 \times 2^3}$   $\sqrt{5832} = \sqrt[3]{3^6 \times 2^3}$   $\sqrt{3^2 \times 2} \times (3^2 \times 2) \times (3^2 \times 2) \times (3^2 \times 2)$   $\sqrt{3^2 \times 2} \times (3^2 \times 2) \times (3^2 \times 2) \times (3^2 \times 2)$ 

₹5832 : 32×2 = ₹5832 : 18 YES

(3)

# Lesson 4 (pages 18-22)

September 17, 2017

10:59 AM

#### Test yourself! How are you doing so far? Remember-- Mid-Point Quiz NEXT class!!

1. List 520 as a product of primes.

2. Find the GCF of 108 and 120.

$$\frac{106}{336}$$

$$\frac{13}{36}$$

$$\frac{$$

3. To which sets of numbers does -13 belong?

4. Which perfect squares would be used to estimate 53?

5. Evaluate the following to the nearest thousandth:

Math 10

# Unit 1: Real Numbers and Radicals

Lesson 4: pages 18-22



Part 1: Undefined Roots



What values of square roots are UNDEFINED? (ie:

NO real solution)

### NEGATIVE

What values of x make these roots mdefined?

1. 
$$\sqrt{x+4}$$
 $x+y \ge 0$ 

2.  $\sqrt{10-5x}$ 

10-5 $x \ge 0$ 

4 by 45 $x$ 

Part 2: Pythagoras  $(a^2 + b^2 = c^2)$  can only be used if a triangle has a \_

angle! 10

Calculate the perimeter of the following triangles.



35X 3E(XE3)



Perimeter = @ +0 +0 = 5+ 151+ 176 = 10.9 cm p = @ + @ + @  $= \sqrt{3} + \sqrt{3} + 8$   $= \sqrt{19.3} \text{ mm}$ 

- Part 3: Squares and Cubes
  - 1. Is this a perfect square?  $\sqrt{2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 3 \cdot 5}$  NOT a perfect square!
  - 2. Is this a perfect cube?  $3 \cdot 7 \cdot 3 \cdot 7 \cdot 3 \cdot 7$

YES!

3. The volume of a cube is  $729cm^3$ . Find the surface area of the cube.





= 486 cm3

126. An engineering student developed a formula to represent the maximum load, in tons, that a bridge could hold. The student used 1.7 as an approximation for  $\sqrt{3}$  in the formula for his calculations. When the bridge was built and tested in a computer simulation, it collapsed. The student had predicted the bridge would hold almost three times as much.

The formula was:  $5000(140 - 80\sqrt{3})$ 

What weight did the student think the bridge would hold?

5000(140-80(17))

= 5000 (140 - 136) = 5000 (4) 20000 tons Calculate the weight the bridge would hold if he used  $\sqrt{3}$  in his calculator instead.

7179-676973

130. Calculate the perimeter to the nearest tenth. The two smaller triangles are right triangles.



3.464101615+6.480740698 7.142418429 + 47.58 2575

P=21.7 \*Units\*

127. For what values of x is  $\sqrt{x-2}$  not defined?

128 For what values of x is  $\sqrt{x+3}$  not defined



129. For what values of x is  $\sqrt{5-x}$  not defined



Calculate the area of the shaded region.

 $\sqrt{10}$  cm 7.072067817  $\sqrt{6}$  cm  $\sqrt{5}$  cm

131. To the nearest tenth:

 $6^{\circ}$  S 132. As an *expression* using radicals: (you may need to come back to this one)



3.46

ble square root is like

finding the Isides lengths of a square (the perfect square the

33. Consider the square below. Why might you 134. Consider the diagram below. Why do you think  $\sqrt{\phantom{a}}$  is called a square root?

think <sup>3</sup>√ is called a cube root?



want to eaval find 2 humiders that multiply together?

bic cube root is like finding 3 side length, of a cube (perfect cube = the volume)



64 cm<sup>3</sup>

cube root is called cube root b/c the cube has 3 eaval number that

know the requals values 135. Find the side length of the square above.

root o/c it wants to

is-called square



get that answer.

137. Why do you think 81 is called a "perfect square" number? s the area of a Because 81 is the area of a square (9x9 - no decimais)

138. Why do you think 729 is called a "perfect cube" number? Because 719 is the volume of a cube (1xwxh) -> cube: all equal side lengths/

widths/ neights (9x9x9)

139. Find the surface area of the following cube.



140. Find the surface area of the following cube.



141. A cube has a surface area of 294 m2. Find its edge length in centimetres.



142. A cube has a surface area of 1093.5 m2. Find its edge length in centimetres.)



| Term                               | Definition                                                                                              | Example                                                                                                   |
|------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| , citi                             |                                                                                                         | Campie                                                                                                    |
| Power                              | $2^{1}, 2^{2}, 2^{3}, 2^{4}, \dots$ are powers of 2.                                                    |                                                                                                           |
|                                    | A power is made up of a base and an exponent.                                                           |                                                                                                           |
| Exponent                           | The smaller number written to the upper right of the                                                    | $2^4 = 2 \times 2 \times 2 \times 2$                                                                      |
|                                    | base that tells you how many times to multiply the base by itself.                                      | 4 is the exponent.                                                                                        |
| Base                               | The "larger" number that the exponent is applied to.                                                    | $2^4 = 2 \times 2 \times 2 \times 2$                                                                      |
|                                    | (The bottom number in a power)                                                                          | 2 is the base.                                                                                            |
| Rational number                    | Numbers that can be written as fractions.                                                               |                                                                                                           |
| Rational Exponent                  | The exponent on a power is a rational number (fraction). $x^{\frac{2}{3}} = \left(\sqrt[3]{x}\right)^2$ | $27^{\frac{2}{3}} = \left(\sqrt[3]{27}\right)^2 = (3)^2 = 9$                                              |
| Integral number                    | An integer {3,-2,-1,0,1,2,3,}.                                                                          |                                                                                                           |
| Integral Exponent                  | The exponent on a power is an integer.                                                                  | Such as $x^2, x^{-3}$ .                                                                                   |
| Coefficient                        | The numbers in front of the letters in mathematical expressions.                                        | In $3x^2$ , 3 is the coefficient.                                                                         |
| Variable                           | The letters in mathematical expressions.                                                                | In $3x^2$ , 'X' is the variable.                                                                          |
| Undefined                          | If there is no good way to describe something, we say it is undefined.                                  | $\frac{3}{0}$ is undefined because we cannot divide by zero.                                              |
| Radical form                       | $\left(\sqrt[3]{8}\right)^2$ is in radical form.                                                        |                                                                                                           |
| Exponential Form                   | $8^{\frac{2}{3}}$ is in exponential form.                                                               |                                                                                                           |
| Zero Exponent                      | Any expression to the power of 0 will equal 1.                                                          | $(2xyz)^0 = 1$                                                                                            |
| Negative Exponent                  | Reciprocate the base and perform repeated                                                               | $5^{-3} = \left(\frac{1}{5}\right)^3 = \frac{1}{5} \times \frac{1}{5} \times \frac{1}{5} = \frac{1}{125}$ |
|                                    | multiplication OR use repeated division.                                                                | $\frac{3}{5} - \frac{5}{5} - \frac{5}{5} - \frac{7}{5} = \frac{7}{125}$                                   |
| Multiply Powers with the Same base | Add the exponents.                                                                                      | $m^5 \times m^2 = m^7$                                                                                    |
| Dividing Powers with               | Subtract the exponents.                                                                                 | $q^6 \div q^4 = q^2$                                                                                      |
| the same base.                     |                                                                                                         |                                                                                                           |
| Power of a Power                   | Multiply the exponents.                                                                                 | $(x^2)^4 = x^8$                                                                                           |
| Power of a Product                 | Apply the exponent to all factors.                                                                      | $(3x^2)^3 = 27x^6$                                                                                        |
| Power of a Quotient                | Apply the exponent to both numerator AND denominator                                                    | $\left(\frac{a}{b}\right)^3 = \frac{a^3}{b^3}$                                                            |

2:26 PM

Math 10

# Unit 2: Exponents

Lesson 1: pages 1-9

Vocabulary:



### **Exponent Laws:**

From Math 9, you should have learned how to simplify the following monomial expressions using the following exponent laws:

Note: DO NOT use exponent laws when bases aren't equal

|           | Exponent Laws                                | Examples (simplify & evaluate where possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-----------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|           | Product of Powers $a^m \times a^n = $        | a) $0.8^{2} \times 0.8^{7} = 0.8$ $= 0.89$<br>b) $3^{4} \times 3^{4} = 3^{441} = 35$<br>c) $10^{10} \times 10^{-6} = 10^{10} = 10^{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|           | Quotient of Powers $a^m \div a^n = \bigcirc$ | a) $5^{5} \div 5^{3} = 5^{6-3} = 5^{3}$ b) $\left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-20} = \left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-20} = \left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-6} = \left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-6} = \left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-6} = \left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-6} = \left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-6} \div \left(-\frac{4}{5}\right)^{-6} = \left(-\frac{4}{5}\right)^{-6} \div \left($ |  |
| NEW<br>** | N. R.R-R                                     | a) $25^{-3} = \frac{1}{35^3}$ b) $6^3 \div 6^5 = 6^{3-5} = 6^{-3}$ c) $5^3 \div 5^5 = 5^{-3} = \frac{1}{6^3}$ b) $(-7x^5y^{-6})^0 = 5^3$ b) $(\frac{5}{2})^4 \div (\frac{5}{2})^4 = (\frac{5}{3})^4 = (\frac{5}{3})^6 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

1

**Example:** Evaluate or simplify the following expressions.

1. 
$$\hat{\mathbf{g}}^2 = 3.3 = 9$$

2. 
$$(-3)^2 = -3 \cdot -3 = 9$$

3. 
$$\theta^{3^2} = -3 \cdot 3 = -9$$

5. 
$$6^{-2} = \frac{1}{6^3} = \frac{1}{36}$$
6.  $-\frac{1}{2^{-4}} = \frac{1}{36} = \frac{1}{36}$ 
7.  $(-2)^{-4} = \frac{1}{(-3)^4} = \frac{1}{16}$ 
8.  $x^3 \cdot x^4 = x^{3+4} = x^{7+4}$ 

7. 
$$(-2)^{-4} = \frac{1}{(-3)^{4}} = \frac{1}{16}$$

8. 
$$x^3 \cdot x^4 = \chi^{3+4} = \chi^{7}$$

$$9) x^{3} \cdot x^{\frac{1}{4}} = \begin{array}{c} 3 \cdot 4 \\ \times 3 \cdot 4 \end{array} \Rightarrow \begin{array}{c} 13 \cdot 4 \\ \times 3 \cdot 4 \end{array} = \begin{array}{c} 13 / 4 \\ \times 3 \cdot 4 \end{array} = \begin{array}{c} 13 / 4 \\ \times 3 \cdot 4 \end{array}$$

$$10.6m^{4} \cdot 2m \div 3m^{-2} = \boxed{4m^{7}}$$

$$6 \cdot 3 \div 3 = 4$$

$$m_{n} = m_{2} = m_{2} = m_{2}$$

$$\begin{array}{lll}
10.6m^{4} \cdot 2m \div 3m^{2} &= \boxed{4m^{7}} \\
6 \cdot 3 &= 3 &= 4 \\
m^{4} \cdot m^{1} &= m^{-3} \\
m^{5} &= m^{-3} &= m^{5} &= m^{7} \\
\hline
PW : PGS 1-9 For Thursday$$

$$\begin{array}{lll}
2x &= 3x + 34 \\
- x &= 3x + 34 \\
- x &= 3x + 34
\end{array}$$

$$\begin{array}{lll}
- x &= 3x + 34 \\
- x &= 3x + 34
\end{array}$$









# Introduction to Exponents

Challenge #1: Solve each riddle using any strategy that works.

| 1. Evaluate.<br>3 <sup>2</sup> × 3 <sup>2</sup><br>2+2:4 3 <sup>4</sup> = 81 | 2. Evaluate.<br>2 <sup>2</sup> × 2 <sup>2</sup> ÷ 2 <sup>3</sup><br>2 <sup>4</sup> ÷ 2 <sup>3</sup><br>2 <sup>1</sup> = 2 <sup>1</sup> | 3. Evaluate. $x^3 \times x^5$ $\boxed{\chi^8}$ | 4. Evaluate.<br>$8x^4 \div 4x^3$ $\frac{2}{1} \frac{8x^4}{1} = 2x^1 : 2x$ |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|
| Rate the riddle:<br>Easy, Medium, Hard                                       | Rate the riddle:<br>Easy, Medium, Hard                                                                                                 | Rate the riddle:<br>Easy, Medium, Hard         | Rate the riddle:<br>Easy, Medium, Hard                                    |
| Easy                                                                         | Edsy                                                                                                                                   | Easy                                           | Fasy                                                                      |

 Find a strategy that is different from the one you used in Question 1 and solve the question again.

$$3 \times 3 \times 3 \times 3 = 34 = 81$$
(Expand)

6. Find a strategy that is different from the one you used in Question 4 and solve the question again.



## What is an Exponent?

Exponents are symbols that indicate an operation to be performed on the base.

positive exponents

Repeated Multiplication

negative exponents

Repeated Division

 $b^e$ 

 $\boldsymbol{b}$  is the base, and  $\boldsymbol{e}$  is the exponent.

Together, we call them a power.

Some examples...

 $2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}$  are the first five *powers of 2*.

 $x^1, x^2, x^3, x^4, x^5$  are the first five powers of x.

Your Notes Here...

# Positive Integral Exponent (multiplication)

$$a^n = 1 \times a \times a \times a \times ... \times a$$
(n factors)

Eg. 
$$3^4 = 1 \times 3 \times 3 \times 3 \times 3 = 81$$

### Zero Exponent

$$a^0=1, \ (a\neq 0)$$

Eg. 
$$5^0 = 1$$
,  $\left(\frac{3}{2}\right)^0 = 1$ 

# Negative Integral Exponent (repeated division)

$$a^{-n}=1\div a^n$$

$$=\frac{1}{a^n}$$

Eg. 
$$5^{-2} = \frac{1}{5^2} = \frac{1}{25}$$

### Challenge #2

7. Evaluate each of the following and examine the pattern:

$$2^4 = 16$$

$$2^3 = 8$$

$$2^2 = 4$$

$$2^1 = 2$$

$$2^0 = 1$$

$$2^{-1} = \frac{1}{2}$$

$$2^{-2} = \frac{1}{4}$$

$$2^{-3} = \frac{1}{8}$$

$$2^{-4} = \frac{1}{16}$$

8. What patterns do you notice in the list you created to the left?

If you divide each by 2 (when going down) or multiply each by 2 (when going up) you will get the answer

9. Does the value of 2° make sense when put into this list?

Yes, blo if you use the pattern I mentioned above it makes sense.

"repeated division?"

10. Do negative exponents make sense in this list?

YES YOU JUST have to change the negative to a positive and put it under 1 (2-2 = 1/24 = 1/4)

11. Why might people say negative exponents mean

Because going from a negative exponent to an even more negative exponent just means divide by 2 here. (you divide by 2 over and over="repeatedly")

12. Identify the base in the following equation.

15. Which of the following is equivalent to -16?

$$\begin{array}{c}
-4^{2} & = -16 \\
(-4)^{2} & = +16 \\
4^{-2} & = \frac{1}{16} \\
-4^{-2} & = \frac{1}{-16} & = \frac{1}{-16}
\end{array}$$

 Identify the power in the following equation.



16. Which of the following is equivalent to −81?

 Identify the exponent in the following equation.

17) Which of the following are equivalent to 1.



18. Which of the following is equivalent to 9?

$$-3^{2} = -9$$

$$(-3)^{2} = 9$$

$$3^{-2} = \frac{1}{9}$$

$$(-3)^{-2} = \frac{1}{(-3)^{2}} = \frac{1}{9}$$

19. Evaluate. —29

20. Evaluate. (-3)<sup>3</sup>

21.  $-4^2$ 

22.  $(-4)^{-2}$ 

23.  $-4^{-2}$ 



 $= \frac{1}{3^4} = 1 \div 3 \div 3 \div 3 \div 3$ 

$$=1\times\frac{1}{3}\times\frac{1}{3}\times\frac{1}{3}\times\frac{1}{3}$$

25. (-3) 1

$$\frac{1}{(-3)^{14}} = \frac{1}{-3 \times -3 \times 3 \times -3}$$

$$= \boxed{\frac{1}{81}}$$

26 -3-



27. 4<sup>2</sup> 4×4:16



28.  $(-4)^2$ 

-4 x-4: 16

29.  $-(4)^2$ 



- 30.  $5^0 = 1$  31.  $-5^0 : -1 \times 1 = -1$
- 32.  $\left(\frac{34a^2}{2x}\right)^0 = \frac{1}{1} = \boxed{1}$

# The Exponent Laws:

| Chal | ler | nge | #3    |
|------|-----|-----|-------|
| _    | 2   | AA  | l+inl |

33. Multiply.  $a^3 \times a^6$   $3 + 6 \cdot 9$ 

Explain your steps.

when bases are the same and powers are being multiplied, add exponents

# Challenge #4

34. Divide.

 $g^{7} \div g^{3}$   $7^{-3} \div 4$   $9^{7} \div 9^{3}$ 

Explain your steps.

when bases are the same and powers are being divided, subtract exponents.

# Challenge #5

35. Multiply.

 $5m^{4} \times 3m^{2}$   $5m^{4} \times 3m^{2}$   $(5 \times 3) \times (m^{4} \times m^{2})$  $15 m^{6}$  Explain your steps.

when powers are multiplied, and bases are the same, multiply the coefficients and add the exponents.

Updated June 2013

CORRECTION:  $\frac{2^3}{3^3} \times \frac{(-6)^2}{4^3} \cdot \frac{8}{2^2} \times \frac{1}{10^3}$ 

Simplify the following, write your answers using exponents.)

36. 
$$a^3 \times a^6$$
  
=  $a^{3+6}$   
=  $a^9$ 

37. 
$$a^2 \times a^{-4}$$
 $2 + -4$ 
 $0^{-2}$ 





40. 
$$2^3 \times 2^{-5}$$
  $3 + -5$   $2^3 \times 2^{-5} = 2^{-2}$ 

41. 
$$g^7 \div g^3$$
  
=  $g^{7-3}$   
=  $g^4$ 

42. 
$$m^4 \div m^0$$
  
 $m^4 \div m^0 : m^4$ 

43. 
$$t^{0} \div t^{-5} = \begin{bmatrix} (-5) & 0 + 5 & 5 \\ & & \end{bmatrix}$$

44. 
$$\frac{x^{13}}{x^3}$$

$$\chi^{13} - \chi^3 : \chi^{10}$$

$$45. \ 5m^4 \times 3m^2 = 5 \times 3 \times m^{4+2} = 15m^6$$

46. 
$$-10x^4 \div -2x^{-2}$$

$$(-10 \div -2) \times (X^4 \div X^{-2})$$

$$5 \times X^6$$

$$5 \times X^6$$



48. 
$$\frac{2}{3}x^3 \times \frac{6}{5}x^4$$

$$\left(\frac{2}{15} \times \frac{x^2}{5}\right) \times \left(\chi^3 \times \chi^4\right)$$

$$\frac{4}{5} \times \chi^7 = \frac{4\chi}{5} \text{ or } \frac{4}{5}\chi^7$$

49. 
$$\frac{2}{a^3} \div \frac{6}{a^6}$$

$$\frac{2}{a^3} \div \frac{6}{a^6}$$

$$\frac{2}{a^3} \div \frac{6}{a^6}$$

$$\frac{2}{a^3} \times \frac{6}{a^6}$$



Multiplying Powers with the same Base: Add the exponents.

Eg.  

$$x^5 \times x^2 = x^{5+2} = x^7$$
  
 $a^{\frac{2}{3}} \times a^{\frac{1}{3}} = a^{\frac{3}{3}} = a^1 = a$   
 $3x^2 \times 2x^5 = 3 \times 2 \times x^2 \times x^5 = 6x^7$ 

**Dividing Powers with the same Base:** Subtract the exponents.

Eg.  

$$d^4 \div d^3 = d^{4-3} = d^1 = d^4$$
  
 $\frac{y^6}{y^{-2}} = y^{6-(-2)} = y^8$ 

October 11, 2017 4:38 PM



Warm-Up:

1. 
$$5^{-2} = \frac{1}{5} = \frac{1}{35}$$

$$2. 8^{-1} = \frac{1}{8} = \frac{1}{8}$$

$$3. \ 3^{-3} = \frac{1}{3^{3}} = \frac{1}{27}$$



8.  $100x^4 \div 50x^8$ 

4. 
$$(-2)^4$$
 =  $(-3)^4$  =  $-3\cdot -3\cdot -3 = 16$ 



6. 
$$a^{\frac{8}{3}} \times a^{\frac{1}{3}} = 0$$

$$a^{\frac{8}{3}} = 0$$

7. 
$$a^{-8} \div a' = 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

#### **Exponent Laws:**

From Math 9, you should have learned how to simplify the following monomial expressions using the following exponent laws:

Note: DO NOT use exponent laws when bases aren't equal

| Exponent Laws                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Examples (simplify & evaluate where possible)                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| $Q_W \times Q_W = Q_{W+W}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a) $(0.25^{+3})^{+5} = 0.35^{+5}$<br>b) $(8^2)^4 = 2^{+5}$ (3) |
| Power of a Power $(a^m)^n = \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} \sum$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b) $(8^2)^4 = 8^8$ (3) $(3^3)^4$ (3) $(3^3)^4$ (3) $(3^3)^4$   |
| (u ) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d) $(2m^{10})^3 = 2^3 \times (m^{10})^3 = 8 m^{30}$            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a) $(-6my^7)^3 = (-6)^3 m^3 \gamma^{21} = -216m^3 \gamma^{31}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) $(x^4y^{-2})^5 = x^{20}$                                    |
| $(ab)^m = \bigcap_{m} \bigcap$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $0) (3t^{0})^{3} = 34 + 28 = 34 = 81 + 33 + 15$                |

(More Complicated) Examples ②: Evaluate or simplify the following expressions.



PW: pgs 10-18 (including)
$$\begin{array}{ccc}
& & 5^{-3} \\
& & \frac{1}{6} \\
& & 5
\end{array}$$

Challenge #6

51. Evaluate. = 9et # ans Wer★

[Power of a Power]

Explain your steps.

when a power is raised to an exponent, multiply the exponents

15625

Challenge #7

52. Simplify.

$$(m^3)^2$$
  
3×2:6

[Power of a Power]

Explain your steps.

when a power is raised to an exponent, multiply the exponents

Challenge #8

53. Simplify.



23 x m 4 x 3

[Power of a Product]

Explain your steps.

when a power is raised to an exponent, put the exponent on the coefficient and evaluate and multiply the exponents.



Updated June 2013 -3-4 × X-2x-4 × y3x-4

# Simplify the following.

| Simplify the following.                                                                 | 0 is 0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\frac{1}{3^{4}} \times \chi^{8} \times \sqrt{\frac{1}{2}}}{\frac{1}{81} \times \frac{\chi^{8}}{1} \times \frac{1}{2^{22}}} = \frac{\chi^{8}}{-81} \sqrt{\frac{1}{2}}$ |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 54. $(m^3)^2$                                                                           | 55. $(t^4)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(56) (x^2y^3)^{-3}$                                                                                                                                                         |
| $= m^3 \times m^3 \qquad = m^{3 \times 2}$                                              | t <sup>4×0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X 2x-3 × V3x-3                                                                                                                                                               |
| $= m^6 \qquad = m^6$                                                                    | t° = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X-6 x y-9 x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                              |
|                                                                                         | pols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NOIDONE!!                                                                                                                                                                    |
| 57. $(2m^4)^3$                                                                          | $(2c^4d^3)^{-3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(59) (-3x^{-2}y^3)^{-4}$                                                                                                                                                    |
| $2m^4 \times 2m^4 \times 2m^4$ $= 2 \times 2 \times 2 \times m^4 \times m^4 \times m^4$ | 2-3 x C4x-3 x d3x-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -3-4 x x-2 x-4 x y 3 x -4                                                                                                                                                    |
| $=8m^{12}$ OR                                                                           | 1/8 × C <sup>-12</sup> × d <sup>-9</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1}{-3^{9}} \times \chi^{8} \times \chi^{-12}$                                                                                                                         |
| $= 2^3 m^{4 \times 3} \\ = 8m^{12}$                                                     | $\frac{1}{8} c^{-12} d^{-9} = \frac{1}{8} \times \frac{1}{c^{12}} c^{-12} d^{-9} = \frac{1}{8} \times \frac{1}{c^{1$ | an thorethers -81                                                                                                                                                            |
| 60. $(3x^{-2}y^{-3})^{-3}$                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62. $(2a^2)^3(4a^3b)^2$ $81\sqrt{12}$                                                                                                                                        |
| 3-3 x x-2x-3 x y-3x-3                                                                   | -2xy3 x (-3)° x4y6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,0 × 4,00                                                                                                                                                                   |
| 1 x y 6 x y 9                                                                           | -21V3 x 9X4V6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 a 6 × 1 6 a 6 b 2                                                                                                                                                          |

### Power of a Power:

Multiply the exponents.

Eg(5<sup>2</sup>)<sup>3</sup> = 
$$(5 \times 5)^3$$
.  
=  $(5 \times 5)(5 \times 5)(5 \times 5)$   
=  $5 \times 5 \times 5 \times 5 \times 5 \times 5$   
=  $5^6$ 

THE RULE:

$$(a^m)^n = a^{m \times n}$$

If you have a power of a power ... multiply exponents,

Eg. 
$$(x^2)^5 = x^{2 \times 5} = x^{10}$$

### Power of a Product:

Apply the exponent to all factors.

Eg. 
$$(5 \times 2)^3$$
  
=  $(5 \times 2) \times (5 \times 2) \times (5 \times 2)$   
=  $5 \times 5 \times 5 \times 2 \times 2 \times 2$   
=  $5^3 \times 2^3$ 

THE RULE:

$$(ab)^m = a^m b^m$$

If you have a power of a product ... apply the exponent to EVERY factor in the product.

Eg. 
$$(a^2b^3)^{-3} = a^{2\times-3}b^{3\times-3} = a^{-6}b^{-9}$$

81Y25

Challenge #9

63. Evaluate.



Explain your steps.

Apply exponent to numerator and denominator

125

Challenge #10

64. Evaluate.



Explain your steps.

- 1) Apply exponent to humerator and denominator
- 2) flip repricol
- 3) Simplify / multiply

Challenge #11

65. Simplify.



Explain your steps.

Apply exponent to numerator (variable) and denominator

Challenge #12

Can divided. Simplify.



Explain your steps.

Apply exponent to the

October 15, 2017 1:32 PM

Math 10

## Unit 2: Exponents

Lesson 3: pages 13-16

Warm-Up: Simplify or evaluate as far as possible. Express answers with positive exponents.

1. 
$$7^{-3} = \frac{1}{7^3} = \frac{1}{343}$$

2. 
$$2^{6} \times 2^{4} = 2^{6} \times 4 = 2^{10}$$
  
 $x^{6} \cdot x^{4} = x^{10} = 1034$ 

3. 
$$x^9 \div x^3 = X^{9-3} = X^{1}$$

4. 
$$7m^4 \times 2m^2 = 14 \text{ m}^{4+1} = 14 \text{ m}^5$$

5. 
$$(-8xy^5)^2 = (-8)^3 \times^2 y^{10}$$
  
=  $64 \times^2 y^{10}$ 

6. 
$$50p^9 \div 10p^{-2} = 5 p^{9}$$

$$= 5 p''$$

7. 
$$(30)^{6}(90)^{0} = (3.1)(1)$$
  
= 3.1

8. 
$$(5m)^{-2} = \frac{1}{(5m)^3} = \frac{1}{5m^3}$$
  
=  $\frac{1}{5m}$ 

9. 
$$(2^{-3})^{-2} = 2^{6} = 64$$

10. 
$$(10y^{-3})(6y^{4})^{2} = 10y^{-3}$$
.  $6y^{3}$ .  $y^{8}$   $= 360y^{-3+6}$   $= 360y^{5}$ 

11.  $(4x^{2}y^{3})^{-3} = y^{-3}$   $= y^{-3}$   $= y^{-4}$   $= y^{-4$ 

#### **Exponent Laws:**

From Math 9, you should have learned how to simplify the following monomial expressions using the following exponent laws:

| Exponent Laws                                                      | Examples (simplify & evaluate where possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power of a Quotient $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$ | $\left(\frac{y^{-3}}{x^{\frac{3}{5}}}\right)^{5} = \frac{y^{-3.5}}{x^{\frac{3}{5}.5}} = \frac{y^{-1.5}}{x^{\frac{3}{5}.5}} = \frac{15}{5} = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Power of a Quotient $\left(\frac{a}{b}\right)^m = \frac{b^m}{a^m}$ | $\left(\frac{y^{-3}}{x^{\frac{3}{5}}}\right)^{-3} = \left(\frac{x^{\frac{3}{5}}}{y^{-\frac{3}{5}}}\right)^{\frac{5}{5}} = \frac{x^{\frac{3}{5}} \cdot 5}{y^{-\frac{3}{5}} \cdot 5} = \frac{x^{\frac{3}{5}} \cdot 5}{y^{-\frac{15}{5}}} = \frac{x^{\frac{3}{5}} \cdot 5}{y^{\frac{3}{5}}} = \frac{x^{\frac{3}{5}} \cdot 5}{y^{-\frac{15}{5}}} = \frac{x^{\frac{3}{5}} \cdot 5}{y^{-\frac{15}{5}}} = \frac{x^{\frac{3}{5}} \cdot 5}{y^{-\frac{15}{5}}} = \frac{x^{\frac{3}{5}} \cdot 5}{y^{\frac{3}{5}}} = \frac{x^{\frac{3}{5}}}{y^{\frac{3}{5}}} = $ |
| Mary Complianted) Francisco                                        | : Evaluate or simplify the following expressions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

1. 
$$\sqrt[4]{x^4y^4m}$$
  $= (\sqrt[4]{y^4m})^6 = (\sqrt[4]{y^4m})^6 =$ 

() Flipped Graction
(3) Simplified brackets

2. 
$$\frac{(5m^{-1}y^3)^2}{my} = 5 \frac{m^{-3}y^6}{my} = \frac{35m^3y^6}{my^3} = \frac{35y^5}{m^3}$$

$$3. \zeta \left(\frac{7x^{-1}y^{6}}{x^{-4}y^{4}}\right)^{-2} = \left(\frac{x}{7x^{-1}y^{6}}\right)^{-2} = \frac{x}{7x^{-1}y^{6}} = \frac{x}{7x^{-1}y^{6$$

$$= \frac{16}{100} = \frac$$

$$5. \left( \frac{8xb^{-7}}{-12x^2b^{-9}} \right)^{-3} = \left( \frac{-13x^3b^{-7}}{8xb^{-7}} \right)^{-3} = \frac{(-13)^3x^3b^{-37}}{8^3x^3b^{-37}} = \frac{4}{29^{16}b^{30}} = \frac{4}{29^{16}b^{30}}$$

QUIZ on Thursday (pgs. 1-16

Fff moor non 100m 227A

### Power of a Quotient:

Apply the exponent to numerator AND denominator.

Eg. 
$$\left(\frac{2}{5}\right)^3 = \left(\frac{2}{5}\right) \times \left(\frac{2}{5}\right) \times \left(\frac{2}{5}\right)$$
$$= \frac{2 \times 2 \times 2}{5 \times 5 \times 5}$$

If asked to write using exponents

$$=\frac{8}{125}$$

If asked to simplify.

$$\left(\frac{2}{5}\right)^{-3}$$
 The negative exponent means "flip the base".

$$=\frac{5\times5\times5}{2\times2\times2}$$

$$=\frac{5^3}{2^3}$$

$$=\frac{125}{0}$$

THE RULE:

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

$$\left(\frac{a}{b}\right)^{-m} = \frac{b^m}{a^m}$$

Simplify the following.

67. 
$$(\frac{x}{2})^{\frac{1}{2}}$$

$$=\frac{x^3}{2^3}$$

$$=\frac{x^3}{8}$$

68.  $\left(\frac{a}{b}\right)^4$ 

$$\begin{array}{c} \sqrt{3} \\ \sqrt{3} \\ \sqrt{10} \\ \sqrt{15} \end{array}$$

70. 
$$\left(\frac{-2a^2}{2a^3}\right)^{\frac{5}{2}}$$



$$\frac{4^2\chi^2}{3^2\sqrt{2}} = \frac{16\chi^2}{9\chi^2}$$

73. 
$$\left(\frac{6x^5y^3}{x^4}\right)^{-2}$$

$$=\frac{(8)^2(y^4)^2}{(6)^2(x^5)^2(y^3)^2}$$

$$= \frac{64y^8}{36x^{10}y^6}$$
$$= \frac{16y^2}{30x^{10}}$$





$$\left(\frac{mn^3}{2m^2n^2}\right)^3$$

$$\frac{m^3 n^{3}}{8m^3 n^6} \frac{n^3}{8m}$$



# Simplify the following.

76. 
$$\left(\frac{6ab^3}{2ab}\right)^3$$

$$= \frac{6^3 0^3 0^9}{2^3 0^3 0^3}$$

$$= \frac{270^6}{80^3 0^3} \rightarrow 270^6$$

77. 
$$\left( \frac{4x^{-3}y^4}{8x^2y^{-2}} \right)^{-2}$$

$$\left( \frac{8x^7y^{-7}}{4x^{-3}y^4} \right)^2$$

78. Show why 
$$\frac{2a^2}{b^3}$$
 is the same as  $2a^2 \times b^{-3}$ 

$$\frac{2a^2}{b^3} = \frac{2a^2}{1} \times \frac{1}{b^3}$$

$$= \frac{2a^2}{b^3} = \frac{2a^2}{b^3}$$

79. Show why 
$$\frac{12x^3}{y}$$
 is the same as  $12x^3 \times y^{-1}$ .

$$\frac{12x^3}{y} = \frac{12x^3}{1} \times \frac{1}{y^2}$$

$$\frac{12x^3}{y} = \frac{12x^3}{y}$$

# Challenge #13

80. Write the following without using <u>any</u> negative exponents.

$$3a^{2}b^{-5}$$

$$\frac{3a^{2}}{1} \times \frac{1}{b^{5}}$$

$$= 3a^{2}$$

$$b^{5}$$

81. Write the following without using <u>any</u> negative exponents.

$$\frac{3}{a^{-2}b^5}$$

$$\boxed{30^2 b^5}$$

### Challenge #14

82. Simplify using positive exponents.

|   | $\left(\frac{2x^{-2}y^4}{x^{-3}y^3}\right)^{-3}$ |
|---|--------------------------------------------------|
| 1 | X-3 Y 3 } 3                                      |
|   | 2x-2 y4                                          |
|   | X-448 3                                          |
|   | 87.01.                                           |

### Explain your steps

- D Flip / reciprical to make exponent (-3)

  positive.
- apply exponent to numerator and denominatorsimplify

$$3^2 = \frac{1}{3^{-2}} / 3^{-2} = \frac{1}{3^2}$$

$$\frac{3x}{yz^{-2}} = \frac{3xz^2}{y}$$
Updated June 2013

# Writing Expressions with Positive Exponents. (Why? Because it is standard practice.)

An expression with powers is simplified if there are no brackets and no negative exponents.

Sometimes you will use the laws above and end up with an answer with negative exponents. The quick way to convert a negative exponent into a positive exponent is to move it across the division *line*. The solution in question 83 shows why this works.

| Simplify the following. (No brackets, no negative exponents)                                         |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 83. $3a^2b^{-5}$ $= 3a^2 \times \frac{1}{b^5}$ $= \frac{3a^2}{b^5}$                                  | 84. $a^2b^{-3}$ $\frac{d^2}{1} \times \frac{1}{b^3} = \boxed{0^2}$                                                                                                              | 85. $\frac{2xy^5}{x^{-4}}$ = $\frac{2xy^5}{1}$ = $\frac{2xy^5}{2x^5}$ = $\frac{2xy^5}{1}$ = |
| 86. $3a^2b^{-3}c^{-5}$ $30^2b^{-5}$ $b^3c^5$                                                         | 87. $(x^4y^{-3}z^{-1})^{-2}$ $(\frac{1}{\chi^4 y^{-3} Z^{-1}})^2$ $\frac{1}{\chi^8 y^{-6} Z^{-2}} = y^6 Z^2$                                                                    | 88. $\frac{(3x^{-3}y^{-5})^{2}}{3^{2}\chi^{-6}\gamma^{-16}}$ $2\chi y$ $= \frac{q}{2\chi^{7}\gamma^{12}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $89. \left(\frac{2x^{-2}y^4}{x^{-3}y^3}\right)^{-3}$ $= \left(\frac{x^{-3}y^3}{2x^{-2}y^4}\right)^3$ | 90. $\frac{\left(\frac{2a^{3}b^{2}}{4a^{-2}b^{-1}}\right)^{-3}}{\left(\frac{4a^{-2}b^{-1}}{2a^{-2}b^{-2}}\right)^{-3}}$ $\left(\frac{12a^{3}b^{2}}{12a^{-2}b^{-2}}\right)^{-3}$ | 91. $\frac{(4m^2n^2)(7m^{-3}n^2)}{14mn^5}$ $\frac{4 \times M^2 \times N^2 \times 7 \times M^{-3} \times N^2}{14 \times M^3 \times M^5}$ $28 M^{-1} N^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $= \frac{x^{-9}y^9}{8x^{-6}y^{12}}$ $= \frac{x^{-3}y^{-3}}{8}$                                       | $\frac{(2  d^{-5}  b^{-3})^3}{2^3  d^{-15}  b^{-9}}$                                                                                                                            | 28 n <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $= \frac{1}{8x^3y^3}$ 92. Why does moving a power                                                    | $\frac{48.0^{-25}b^{-9}}{21}$ $= \frac{4}{4} \times \frac{1}{a^{25}} \times \frac{1}{b^{9}} = \frac{1}{a^{25}}$ across the division line in a fraction                          | $\frac{4}{a^{15}b^{9}}$ on change the sign on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

noving a power across the division line in a traction change the sign on the

B/c the base is reciprocated

Simplify the following. (No brackets, no negative exponents)



94. 
$$\left(\frac{4a^3b^{-2}}{6a^2b^{-1}}\right)^3$$

$$\left(\frac{60^2b^{-1}}{4a^3b^{-2}}\right)^3$$

$$\frac{2160^8b^3}{640^3b^{-2}}$$

$$\frac{27276b^2}{80^3}$$

95. 
$$\left(\frac{8x^2y^{-3}}{4x^{-1}y^{-5}}\right)^{-3}$$

$$\left(\frac{1}{2x^3y^2}\right)^3$$

$$= \frac{1}{8x^9y^6}$$

96. 
$$\left(\frac{12x^{-3}y^{5}}{16x^{3}y^{-2}}\right)^{-1}$$

$$\left(\frac{\frac{4}{3}6x^{\frac{6}{3}}x^{\frac{1}{3}}}{212x^{\frac{1}{3}}\sqrt{x^{7}}}\right)^{\frac{1}{3}}$$

$$\left(\frac{\frac{4}{3}x^{\frac{6}{3}}}{3\sqrt{7}}\right)^{\frac{1}{3}}$$

017 1:46 PM

Math 10

### Unit 2: Exponents

Lesson 4: pages 17-19

Warm-Up #1: Simplify or evaluate as far as possible. Express answers with positive exponents.

1. 
$$\frac{3x^2y^4}{4x^3y^3} = \frac{3}{4} \frac{x^3y^3}{y^4-3}$$

2.  $\frac{3x^2y^4}{4x^3y^3} = \frac{3}{4} \frac{x^3y^3}{y^4-3}$ 

$$= \frac{3}{4} \frac{x^3y^3}{y^5-3} = \frac{3}{4} \frac{x^3y^4}{y^5-3}$$

$$= \frac{3}{4} \frac{x^3y^3}{y^5-3} = \frac{3}{4} \frac{x^4}{y^5-3}$$

$$= \frac{3}{4} \frac{x^3y^4}{y^5-3} = \frac{3}{4} \frac{x^4}{y^5-3}$$

4.  $\frac{(n^2)^4(-n^0)^3}{-n^2} = \frac{3}{4} \frac{x^4}{y^5-3} = \frac{3}{4} \frac{x^4}{y^5-3}$ 

$$= \frac{3}{4} \frac{x^3y^4}{y^5-3} = \frac{3}{4} \frac{x^4}{y^5-3}$$

$$= \frac{3}{4} \frac{x^4}{y^5-3} = \frac{3}{4} \frac{x^4}{y^5-3}$$

$$= \frac{3}{4$$

### Warm-Up #2: Use your calculator to complete the following tables:

16

25 36 Explain the effect the exponent  $\frac{1}{2}$  has on the value of x.

Write a rule to describe this relationship:

$$x^{\frac{1}{2}} = \sqrt{X}$$

2.

| у  |     |
|----|-----|
| 1  |     |
| 8  | 3   |
| 27 | 7 3 |
| 64 | 1 4 |
| 12 | 5 5 |
| 21 | 6 6 |

Explain what effect the exponent  $\frac{1}{3}$  has on the value of y.

Write a rule to describe this relationship:

$$y^{\frac{1}{3}} = \sqrt[3]{1}$$

3. What do you think  $x^{\frac{1}{4}}$  means? Test your prediction on your calculator, letting x = 16.



4. What would  $x^{\frac{1}{n}}$  mean (as a radical)?



#### **Exponent Law:**

| Exponent Laws                                                        | Example #1 (simplify & evaluate where possible)                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exponent Laws                                                        | a) $100^{\frac{1}{2}} = \sqrt[3]{100} = 10$<br>b) $(8)^{\frac{1}{2}} = \sqrt[3]{8} = -3$                                                                                                                                                                                                                                                                           |
| Rational Exponents (with numerator = 1) $\frac{1}{x^{n}} = \sqrt{x}$ | (a) $1024^{\frac{1}{5}} = 5\sqrt{1034} = 4$<br>(d) $(625m^4)^{\frac{1}{4}} = 4\sqrt{635}m^4 = 4\sqrt{635} \times 4\sqrt{m^4}$<br>(e) $(81m)^{\frac{1}{4}} = 4\sqrt{81m}$<br>(f) $\frac{1}{6}343^{\frac{1}{3}} = 4\sqrt{81} \times 4\sqrt{m}$<br>(g) $\frac{1}{6}343^{\frac{1}{3}} = 4\sqrt{81} \times 4\sqrt{m}$<br>(h) $\frac{1}{6}343^{\frac{1}{3}} = 3\sqrt{m}$ |
|                                                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                               |

### exponent

Example #2: Simplify the following in radical form.

2. 
$$\sqrt[5]{-32} = (-3)^{1/5}$$

2. 
$$\sqrt[5]{-32} = (-37)^{1/5}$$
3.  $\frac{1}{\sqrt[3]{125}} = (\sqrt[3]{135})^{-1} = (\sqrt[3]{5})^{-1}$ 

$$= (0) \times (3 \times y)^{1/2}$$

PW: pg. 17-19 (including 19) 3 QUIZ THURS pgs. 1-16 (not today)

# 97. Challenge #15

If 
$$\sqrt{9} \times \sqrt{9} = 9$$
,

and 
$$9^{a} \times 9^{a} = 9$$

Then what is the value of 'a'?

<u>1</u>

# 98. Challenge #16

If 
$$\sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2} = 2$$
,

and 
$$2^a \times 2^a \times 2^a = 2$$

Then what is the value of 'a'?

3

| Explain: |                |     | (61       |       |
|----------|----------------|-----|-----------|-------|
| 9===     | $\sqrt{q^2} =$ | ₹/9 | x = 2/q = | 3×3=9 |
|          |                |     |           |       |

Explain:  $2^{\frac{3}{3}} = \sqrt[3]{2^{1}} = \sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2} = 2$ 

99. Write a "rule" that relates a rational (fraction) exponent to an equivalent radical expression.

A rational (fraction) exponent can be written as an equivalent radical expression by making the enominator the index and the numerator the exponent of the radicand.

EX. 
$$\chi^{\frac{1}{2}} = \sqrt[2]{\chi^1} \Rightarrow \sqrt[2]{\chi}$$

square root "2" is implied

index 3

the denominator in a rational exponent is the index.

# Rational Exponents in the form:

rddical form  $\chi_n^-$ 

$$5/x = \chi^{\frac{1}{5}} \rightarrow exponential$$

Remember, rational often refers to fractions.

### What does a rational exponent mean?

Recall: 
$$\sqrt{9} \times \sqrt{9} = 9$$

If 
$$\sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2} = 2$$

But 
$$9^{\frac{1}{2}} \times 9^{\frac{1}{2}} = 9$$

But 
$$2^{\frac{1}{3}} \times 2^{\frac{1}{3}} \times 2^{\frac{1}{3}} = 2$$

And 
$$3 \times 3 = 9$$

 $So. \sqrt{9} = 9^{\frac{1}{2}} = 3$ 

So, 
$$\sqrt[3]{2} = 2^{\frac{1}{3}}$$

### 100. Write another statement like the one to the left.

But: 
$$16^{\frac{1}{2}} \times 16^{\frac{1}{2}} = 16$$
 But:  $8^{\frac{1}{3}} \times 8^{\frac{1}{3}} \times 8^{\frac{1}{3}} = 8$ 

And: 
$$4 \times 4 = 16$$
 SD:  $\sqrt[3]{8} = 8^{\frac{1}{3}}$ 

The Rule...

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

and 
$$a^{-\frac{1}{n}} = \frac{1}{\sqrt[n]{a}}$$

Evaluate or simplify the following.

| 2/49 | = 7 |
|------|-----|

102. 
$$-(16^{\frac{1}{2}})$$

103. 
$$(-16)^{\frac{1}{2}}$$

$$2\sqrt{-16} = \boxed{40}$$
(no real solution)

 $101 49\frac{1}{2}$ 

105. 
$$27^{-\frac{1}{3}}$$

107. 100004

108. 
$$(4x^2)^{\frac{1}{2}}$$

109. 
$$(27x^6)^{-\frac{1}{3}}$$









113. 
$$4^{-\frac{1}{5}}$$

### Write in exponential form.





$$(2y)^{\frac{1}{2}}$$

$$121. \frac{1}{\sqrt[5]{3x}}$$

$$(3x)^{-\frac{1}{5}}$$

# Consider the following...

Step 1: 
$$32^{\frac{3}{5}} = \left(32^{\frac{1}{5}}\right)^3$$

Step 2: 
$$32^{\frac{3}{5}} = (\sqrt[5]{32})^3$$

Step 3: 
$$32^{\frac{3}{5}} = (2)^3$$

**Step 4**: 
$$32^{\frac{3}{5}} = 8$$

# 122. Challenge #17. Complete the following as shown above.

Step 1: 
$$27^{\frac{2}{3}} = \left(27^{\frac{1}{3}}\right)^2$$

Explain: 
$$-MQKQ = \frac{2}{3} + (\frac{2}{3})^2 = \frac{1}{3} \times \frac{2}{1} = \frac{2}{3}$$

Step 2: 
$$27^{\frac{2}{3}} = (3\sqrt{27})^{2}$$

Step 3: 
$$27^{\frac{2}{3}} = (3)^{1}$$

Step 4: 
$$27^{\frac{2}{3}} = 9$$

2:43 PM

Math 10

### Unit 2: Exponents

Lesson 5: pages 20-24

Warm-Up #1: Simplify or evaluate as far as possible (#1-6), or re-write radicals as exponents (#7-10). Express answers with positive exponents.

2. 
$$27^{-\frac{1}{3}} = \frac{1}{37^{3}}$$

$$= \frac{1}{3\sqrt{57}} = \frac{1}{3}$$

3. 
$$\frac{1}{25^{\frac{1}{2}}} = \frac{1}{25}$$

$$= -5$$

4. 
$$(-25)^{\frac{1}{2}} = \sqrt[3]{-35}$$
  
NO SOLUTION

5. 
$$1024^{0.5} = 1034^{1/3}$$

$$= \sqrt[3]{1034}$$

$$= 33$$

6. 
$$((-2)^{\frac{-2}{2}})^{\frac{1}{2}} = (-\frac{1}{2})^{\frac{-1}{2}}$$

$$= \frac{1}{(-\frac{1}{2})^{\frac{1}{2}}} = \frac{1}{2}$$
7.  $8\sqrt[3]{a} = \sqrt[8]{3}$ 

8. 
$$\sqrt[3]{16y^8} = (16y^8)^{1/3}$$

$$= 16^{1/3}y^4 = \frac{8}{1} \times \frac{1}{3}$$

$$= \frac{16}{1} \times \frac{1}{3} = \frac{8}{3}$$
9.  $\sqrt[50]{2}$ 

$$= 50 (xy)^{-1/3} = 3$$
on bottom

$$= (3\sqrt{2})^{6}$$

$$= (3\sqrt{2})^{6}$$

$$= (7\sqrt{3})^{6}$$

$$= (7\sqrt{3})^{6$$

1

#### Warm-Up #2:

1. Re-write the exponents below as a product of two fractions, remembering that  $\frac{a}{b} = \frac{a}{1} \times \frac{1}{b}$ . Then, evaluate. The first one is done as an example 3

a. 
$$9^{\frac{3}{2}} = (9^{\frac{3}{2}})^{\frac{1}{2}} = (729)^{\frac{1}{2}} = \sqrt{729} = 27$$

b. 
$$1000 = (100^{\frac{5}{1}})^{\frac{1}{2}} = (1000000000)^{\frac{1}{3}} = 100000$$

c. 
$$216^{\frac{3}{4}} = (316^{\frac{3}{4}})^{\frac{1}{5}} = (46656)^{\frac{3}{4}} = 36$$

This works, but there's an easier way!

#### **Exponent Law:**

|                                         | Exponent Laws                                 | Example #1 (simplify & evaluate where possible)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                                               | a) $\frac{32^{3}}{7} = (53)^{3} = (2)^{3} = (3)^{3} = (3)^{3} = (5)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{3} = (-3)^{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                         | € loot<br>M<br>V po wer                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| *************************************** | Rational Exponents (with numerator $\neq 1$ ) | e) $(-25)^{\frac{5}{2}} = (\sqrt[3]{-35})^5 = NO SOLUTION$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                         | or nJxm                                       | $\begin{array}{ll} f) & = 25^{\frac{5}{2}} & = -(375)^5 = -(5)^{\frac{5}{2}} = -3125 \\ g) & -25^{-\frac{5}{2}} & = -(375)^{-5} = -(5)^{-\frac{5}{2}} = -\frac{1}{55} = \frac{1}{3125} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                         | 1 = 3<br>x                                    | h) $16^{1.5} = 16^{3/3} = (316)^3 = (4)^3 = 64$ i) $1000^{\frac{2}{3}} = \frac{1}{1000^{\frac{2}{3}}} = \frac{1}{10000^{\frac{2}{3}}} = \frac$ |
|                                         |                                               | (31000) 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Exam

ple #2: Write the following with exponents. Then use exponent laws and evaluate.

1. 
$$\sqrt{8} \times \sqrt{83}$$
 =  $\sqrt{8}$   $\times$   $\sqrt{8}$  =  $\sqrt{8}$ 

$$2. \sqrt{g^5} \times \sqrt{g^7} = 9^5 \times 9^4 \times 9^5 = 9^{10} \times 9^{10} = 9^{10} = 9^{10} \times 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10} = 9^{10}$$

3. 
$$\sqrt{163}$$
 =  $\left( \frac{3}{6} \right)^{\frac{1}{3}}$  =  $\left( \frac{3}{6} \right)^{\frac{3}{3}}$  =  $\left( \frac{3}{6} \right)^{\frac{3}{4}}$  =  $\left( \frac{3}{6} \right)^{\frac{3}{4}}$  =  $\left( \frac{3}{6} \right)^{\frac{3}{4}}$ 

4. 
$$\sqrt{x^2} (x^3) = X^{\frac{3}{3}} \cdot X^{\frac{1}{3}} = X^{\frac{3}{13} + \frac{3}{13}} = X^{\frac{1}{13} + \frac{3}{13}$$

5. 
$$(\sqrt[5]{18})^2 \cdot \sqrt[5]{18^3} = 18^{\frac{3}{5}} \cdot 18^{\frac{3}{5}} = 18^{\frac{5}{5}} = 18^{\frac{5}{5}} = 18^{\frac{5}{5}}$$

6. 
$$\sqrt[3]{64} \cdot \sqrt[4]{16^3} = 64^{\frac{1}{3}} \cdot 16^{\frac{3}{4}} = 64^{\frac{1}{3}} \cdot \frac{\frac{1}{4}}{\frac{1}{3}} \cdot \frac{\frac{1}{3}}{\frac{1}{4}} \cdot \frac{\frac{1}{3}}{\frac{1}{3}} = 64^{\frac{1}{3}} \cdot \frac{\frac{1}{4}}{\frac{1}{3}} = 64^{\frac{1}{3}} =$$

Example #3: Find the area of a triangle that has a base of  $82\frac{4}{5}cm$  and a height of  $82\frac{11}{5}cm$ . (Hint:  $A = \frac{b \times h}{2}$ )

$$=\frac{89^{\frac{1}{8}+\frac{1}{8}}}{3} = \frac{3}{89^{\frac{1}{8}+\frac{1}{8}}} = \frac{3}{89^{\frac{1}{8}}} = \frac{3}{89^{\frac{1}{8}}}$$

#### $x^{\frac{m}{n}}$ where *m* is not 1. Rational Exponents in the form:

Consider the power  $27\frac{2}{3}$ . To understand the meaning of the rational exponent we can use the exponent law:

$$(a^m)^n=a^{m\times n}.$$

If we take  $27^{\frac{2}{3}}$  and split the exponent into two parts we get the following...

$$27^{\frac{2}{3}} = \left(27^{\frac{1}{3}}\right)^2$$

This can then be written as...

$$(\sqrt[3]{27})^2$$

The power can be evaluated from this point...

$$\left(\sqrt[3]{27}\right)^2 = (3)^2 = 9$$

The Rule...

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$
 and  $a^{-\frac{m}{n}} = \frac{1}{\sqrt[n]{a^m}} = \frac{1}{\left(\sqrt[n]{a}\right)^m}$ 

Two more examples:

Eq.1 Evaluate  $8^{\frac{2}{3}}$  without using a calculator.

$$8^{\frac{2}{3}} = (8^{\frac{1}{3}})^2 = (\sqrt[3]{8})^2 = (2)^2 = 4$$

Means square of the cube root of 8.

Eq.2 Evaluate  $9^{-\frac{3}{2}}$  without using a calculator.

$$9^{-\frac{3}{2}} = \left(\frac{1}{9}\right)^{\frac{3}{2}} = \frac{\left(\frac{1}{12}\right)^3}{\left(\frac{1}{92}\right)^3} = \frac{1}{(\sqrt{9})^3} = \frac{1}{(3)^3} = \frac{1}{27}$$

Means "the reciprocal" of the cube of the square root of 9.

Write each of the following using radicals. (Do not evaluate)

| 124, 4 <sup>s</sup>    | $125.4^{\frac{1}{5}}$               |
|------------------------|-------------------------------------|
| 5/43                   | 5/44                                |
| 127. 4 <sup>-3</sup> 5 | 128. 4 <sup>-4</sup> / <sub>5</sub> |
| <u>1</u><br>5/43       | 1<br>5/44                           |
|                        | 5√H <sup>3</sup>                    |

| 129. $4^{\frac{1}{2}}$                                       | 130, 125 3                                                                | 131. $8^{\frac{2}{3}}$                                                     |
|--------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 4= = 4 = 2                                                   | 125 = 3 125 = 5                                                           | $(8\frac{1}{3})^2$                                                         |
|                                                              |                                                                           | (3/8)2 = (2)2 = 4                                                          |
| 132, 814                                                     | 133, $4\overline{2}$                                                      | 134. 16 <sup>-3</sup> / <sub>4</sub>                                       |
| $(81^{\frac{2}{4}})^3$                                       | $\left( +\frac{2}{2}\right)^3$                                            | $\frac{1}{(16\frac{1}{4})^3} = \frac{1}{(\frac{4}{16})^3} = \frac{1}{(2)}$ |
| $(3)^3 = 27$                                                 | $(2/4)^3 : (2)^3 : 8$                                                     | = 3                                                                        |
| 135. $(-27)^{-\frac{2}{3}}$                                  | 136. $(-8)^{-\frac{5}{3}}$                                                | 137. 9 <sup>2.5</sup>                                                      |
| $\left(\frac{1}{(-27)^{\frac{1}{3}}}\right)^2$               | 1 1                                                                       | $q = \left(q = \frac{1}{2}\right)^s = \left(\sqrt{q}\right)$               |
| $(\frac{1}{3}\sqrt{-27})^2 = \frac{1}{(-3)^2} = \frac{1}{9}$ | $\frac{1}{(-8)^{\frac{1}{3}})^{5} \cdot (3\sqrt{-8})^{5} \cdot (-2)^{5}}$ | = (3) = 243                                                                |
| 138 (_1) =                                                   | 3 (100) 2                                                                 | 277                                                                        |

138.  $(-1)^{\frac{1}{3}}$  139.  $(\frac{100}{9})^2$   $(00^{\frac{1}{2}})^3$   $(00^{\frac{1}{2}})^3$   $(00^{\frac{1}{2}})^3$   $(00^{\frac{1}{2}})^3$   $(00^{\frac{1}{2}})^3$   $(00^{\frac{1}{2}})^3$   $(00^{\frac{1}{2}})^3$ 



Page 21 | Exponents



### Write each of the following using exponents. (Do not evaluate)

Eg. 
$$\sqrt{12} = 12^{\frac{1}{2}}$$

Eg. 
$$(\sqrt[3]{7})^4 = 7^{\frac{4}{3}}$$

Eg. 
$$\frac{1}{(\sqrt[3]{7})^2} = 7^{-\frac{2}{3}}$$

| # H H                                                                                                                |                                                                                                                     |                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 141. $\sqrt{7}$                                                                                                      | 142. <sup>3</sup> √34<br>34 <sup>1/3</sup>                                                                          | 143. $\sqrt[3]{-11}$ $(-11)^{\frac{1}{3}}$                                                                                                                                                                                    |
| $\sqrt{\frac{1}{5}} = \sqrt{\frac{2}{5}}$                                                                            | (145) <sup>3</sup> √6 <sup>4</sup>                                                                                  | 146. $\left(\sqrt[3]{x}\right)^2$ $\left(\chi^{\frac{1}{3}}\right)^7 = \chi^{\frac{2}{3}}$                                                                                                                                    |
| 147. $(\sqrt[5]{6})^3$ $(6^{\frac{1}{5}})^3 : 6^{\frac{3}{5}}$                                                       | 148. $(\sqrt[4]{2x})^5$ $\left((2\chi)^{\frac{1}{4}}\right)^5$ $= \left((2\chi)^{\frac{5}{4}}\right)^{\frac{5}{4}}$ | $(2b^{3})^{\frac{1}{3}} = 2^{\frac{1}{3}}b$ $(2b^{3})^{\frac{1}{3}} = 2^{\frac{1}{3}}b$ $(2b^{3})^{\frac{1}{3}} = 2^{\frac{1}{3}}b$ $(2b^{3})^{\frac{1}{3}} \times b^{\frac{1}{3}} \times b^{\frac{1}{3}} = 2^{\frac{1}{5}}b$ |
| 150. $\frac{1}{\left(\sqrt[5]{x}\right)^4}$ $\left(\chi^{-\frac{1}{5}}\right)^{\frac{1}{4}}$ $= \chi^{-\frac{1}{5}}$ | $151. \frac{\frac{1}{4\sqrt{x^3}}}{\sqrt[3]{x^3}}$                                                                  | $\begin{array}{c c} \hline (152.)\sqrt[3]{2b^3} \\ \hline \\ 2b^{\frac{1}{2}} \\ \hline \end{array}$                                                                                                                          |

Evaluate if possible.

$$153. (-9)^{\frac{1}{2}}$$

$$2 - 9 = 3$$

156. 
$$3\frac{1}{2} \times 3\frac{1}{2}$$
 $\sqrt{3} \times \sqrt[2]{3} : \sqrt{3} \times \sqrt{3}$ 

154, 100000<sup>3</sup>/<sub>5</sub>

$$(5/100000)^3$$
  $(10)^5/1000$ 

157. 
$$-9^{\frac{1}{2}}$$

155. 
$$\left(\frac{27}{8}\right)^{\frac{2}{3}}$$

$$27^{\frac{2}{3}}: (\sqrt[3]{27})^2: (3)^2: 9 = \boxed{9}$$

$$8^{\frac{2}{3}}: (\sqrt[3]{8})^2: (2)^2: 4 = \boxed{9}$$

158. 
$$(2^5)^{0.4}$$

$$(2^{5})^{\frac{4}{30}} = (2^{5})^{\frac{2}{5}}$$

$$(5\sqrt{32})^{2} = (2)^{2} = 4$$

#### Evaluate if possible.

159.

a. 
$$-8^{\frac{4}{3}}$$
 $-1 \times (3/8^{+})^{4}$ 
 $= -1 \times (2)^{4} = -1 \times 16$ 

b. 
$$(-8)^{\frac{4}{3}}$$
 =  $[-16]$   $(-2)^{4} = (-2)^{4} = 16$ 

 $160.4^{\frac{3}{2}} \div 16^{\frac{1}{4}}$ 

$$(2\sqrt{4})^3 \div \sqrt{16}$$
  
 $(2)^3 \div 2$   
 $8 \div 2 \div \boxed{4}$ 

161. 
$$(-1)^{-\frac{3}{2}}$$

$$\frac{2}{(\sqrt[3]{-1})^3} = \frac{1}{i^3}$$

no real solution

What important rule is explored above? The exponent only

effects the thing closest to it.



163.  $(\sqrt[4]{16})(\sqrt[5]{32})$ 



164.  $\sqrt[3]{729}$ 

165. Evaluate to two decimal places using a calculator

> √300 3.13



352: 325×35: 35×35×35:15

166. Evaluate to two decimal places using a calculator

5 <del>√256</del> 1,98 167. Evaluate to two decimal places using a calculator

<sup>13</sup>√2500

168. Challenge

Write the following radicals as a single power.





Write each of the following radicals as a single power.

| write each of the following radio                                                                                                                                                |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $169_{+}\left(\sqrt{x^{3}}\right)\left(\sqrt[3]{x}\right)$                                                                                                                       |  |  |  |  |  |
| $\left(x^{\frac{3}{2}}\right)\left(x^{\frac{1}{3}}\right)$ Write as powers (both base-x). $\left(x^{\frac{9}{6}}\right)\left(x^{\frac{2}{6}}\right)$ Create common denominators. |  |  |  |  |  |
| $\left(x^{\frac{9+2}{6}}\right)$ Add numerators.                                                                                                                                 |  |  |  |  |  |
| $\left(\chi^{\frac{11}{6}}\right)$                                                                                                                                               |  |  |  |  |  |
|                                                                                                                                                                                  |  |  |  |  |  |

| THE PARTY OF THE P | - |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $170. \left(\sqrt[3]{x^2}\right) \left(\sqrt[4]{x^3}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| $\chi^{\frac{2}{3}} \times \chi^{\frac{3}{4}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| $= \chi \frac{1}{8} \times \chi \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| X 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |



More rational exponents...

172. The height and the base of a triangle each measure  $2^{\frac{3}{2}}$  cm. Without using a calculator, what is the area of the triangle?

 $\frac{2^{\frac{3}{2}} \times 2^{\frac{3}{2}}}{2} = \frac{2^{\frac{6}{2}}}{2} = \frac{2^{\frac{6}{2}}}{2} = \frac{2^{\frac{3}{2}}}{2} = \frac{8}{2} = \frac{4 \text{ cm}^2}{2}$ 

Find the area of a rectangle if the length is  $5^{\frac{2}{3}}$  and the width is  $5^{\frac{2}{5}}$ . Write your answer in exponential form, then approximate to two decimal places.



174. Inscribe a square inside another square such that the corners of the internal square contact the midpoint of sides of the larger square. If the side length of the larger square is  $\sqrt{7}$ , what is the area of the inscribed square? Answer in exact form.





177. Ei-Q evaluated  $64^{\frac{3}{2}}$  using the following steps. In which step did she make her first error?

- Step 1:
- $64^{\frac{3}{2}} = \left(\sqrt{64}\right)^3$
- Step 2:
- $64^{\frac{3}{2}} = (8)^3$
- Step 3:
- $64^{\frac{3}{2}} = 24$  <sup>2</sup> 512
- a) In step 1.
- b) In step 2.
- c) In step 3.
- d) She made no error.

178. Flinflan started to evaluate  $81^{\frac{3}{4}}$  in two different ways shown below. Which of the following statements is correct?

- Method 1:
- $81^{-\frac{3}{4}} = (\sqrt[4]{81})^{-3}$
- Method 2:
- $81^{-\frac{3}{4}} = \frac{1}{\sqrt[4]{81^3}}$
- a) Method 1 will produce the correct answer but method 2 will not.
- b) Method 2 will produce the correct answer but method 1 will not.
- (c) Both methods will produce the correct answer.
- d) Neither method will produce the correct answer.



### Match each item in column 1 with an equivalent item in column 2

#### Column 1

183. 
$$\left(\frac{t}{i}\right)^{\frac{2}{3}} = \boxed{\phantom{a}}$$

184. 
$$\left(\frac{j}{t}\right)^{\frac{3}{2}}$$

$$(185)\left(\frac{t}{j}\right)^{-\frac{2}{3}} 3\sqrt{\frac{j^2}{t^2}} = A$$

186. 
$$\left(\frac{J}{t}\right)^{-\frac{3}{2}} = \frac{1}{J^{\frac{1}{2}}} = \frac{1}{J^{\frac{1}{2}}}$$

$$187. \left(\frac{t}{j}\right)^{\frac{3}{2}} = \sqrt{\frac{j^2}{t^2}} = C$$

#### Column 2

$$A. \sqrt[3]{\frac{j^2}{t^2}}$$

$$B = \left(\frac{j}{t}\right)^{\frac{3}{2}}$$

$$\sum_{i} \sqrt{\frac{j^3}{t^3}}$$

$$D. - \left(\frac{t}{j}\right)^{\frac{2}{3}}$$

$$\mathcal{E}, \sqrt{\frac{t^3}{j^3}}$$

$$\sqrt[3]{\frac{t^2}{j^2}}$$

$$G_{\cdot} = \left(\frac{t}{J}\right)^{\frac{3}{2}}$$

# 188) Which of the following is equivalent to $3a^{\frac{1}{2}} \times (5a)^{\frac{1}{2}}$

15 a 2: 15 a a. 15a

b.a√15

c.3√5a d.3a√5

3 × 0 = × 5 = × 0 = 2

189. Which of the following is equivalent to  $2x^{\frac{1}{2}} \times (3x)^{\frac{1}{2}}$ 

a. 6x  $b.x\sqrt{6}$ 

 $c.2\sqrt{3x}$ 

2 x x = x 3 = x X = =

= 2xx2 x x2 x 32

= 2×X=×3=

2 x x x 3 2

= 2x13

190) Which of the following is not equivalent



(191) Which of the following is not equivalent



192) Evaluate. Answer in simplest fraction form.



(193) Evaluate. Answer in simplest fraction form.

$$\frac{3^{-2} + 3^{2}}{3^{-2} + 2^{0}}$$

$$3^{2} \times 3^{2}$$

$$2^{0} \times 3^{2}$$

$$\frac{3^{4}}{1 \times 9^{-1}} = \frac{81}{9} = \frac{9}{1}$$

$$\frac{3^{-2} + 3^{2}}{3^{-2} + 2^{0}} = \frac{\frac{1}{3^{2}} + 9}{\frac{1}{3^{2}} + 1}$$

$$\frac{1}{q} + q \qquad \frac{q^{\frac{1}{q}}}{1^{\frac{1}{q}}} = \frac{82}{q}$$

$$\frac{1}{q} + 1$$

$$\frac{82}{9} = \frac{10}{9} = \frac{82}{9} \times \frac{10}{10}$$
orth neuroscian 10 pcf lieu affair 1 = 3015

Page 27 | Exponents

Copyright Mathbeacon.com. Use with permission. Do not use after June 2015

$$\frac{3^{\circ}+2^{-1}}{5^{2}+2^{2}} = \frac{1+\frac{7}{2}}{9+4} = \frac{1+\frac{7}{2}}{13} = \frac{3}{2} = \frac{3}{2} + \frac{13}{1} = \frac{3}{2} \times \frac{1}{13} = \frac{3}{26}$$

13

| Answers:   |                                                                                           |   | 56.         | $x^{-6}y^{-9} = \frac{1}{x^6y^9}$                                                     |     | 98. 1                                                                                                                                                                       |
|------------|-------------------------------------------------------------------------------------------|---|-------------|---------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.         | 81                                                                                        |   |             |                                                                                       |     | 3<br>1 n =                                                                                                                                                                  |
| 2.         | 2                                                                                         |   |             | $8m^{12}$                                                                             |     | $99,  x^{\frac{1}{n}} = \sqrt[n]{x}$                                                                                                                                        |
| 3.         | x <sup>8</sup>                                                                            |   | 58.         | $2^{-3}c^{-12}d^{-9} = \frac{1}{8c^{12}d^9}$                                          |     |                                                                                                                                                                             |
| 4.         | 2 <i>x</i>                                                                                |   | 59.         | $(-3)^{-4}x^{8}y^{-12} = \frac{x^{8}}{81y^{12}}$                                      |     |                                                                                                                                                                             |
| 5.         | $9 \times 9 = 81 \text{ or}$                                                              | , | <i>JJ</i> . | B1y12                                                                                 |     |                                                                                                                                                                             |
| -          | $3 \times 3 \times 3 \times 3 = 81 \text{ or } 3^4 = 81$                                  |   | 60.         | $3^{-3}x^6y^9 = \frac{1}{27}x^6y^9$ or $\frac{x^6y^9}{27}$                            |     | 100. Possible answer:                                                                                                                                                       |
| 6.         | Answers vary. Similar to                                                                  |   | 61.         | $-18x^5y^9$                                                                           |     | $\sqrt[4]{3} \times \sqrt[4]{3} \times \sqrt[4]{3} \times \sqrt[4]{3} = 3$                                                                                                  |
|            | above.                                                                                    |   | 62.         | $128a^{12}b^2$                                                                        |     | $3^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times 3^{\frac{1}{4}} = 3$                                                                                  |
| 7.         | $16,8,4,2,1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16}$                             |   | 63.         | 8                                                                                     |     | 34 X 34 X 34 X 34 — 3                                                                                                                                                       |
|            |                                                                                           | , | 05.         | 8<br>125<br>125                                                                       |     | $\sqrt[4]{3} = 3^{\frac{1}{4}}$                                                                                                                                             |
| 8.         | Divide by 2 as you go down                                                                | ( | 64.         | 8                                                                                     |     | 101. 7                                                                                                                                                                      |
|            | the list                                                                                  |   | 65.         | 8<br>x <sup>3</sup><br>8                                                              |     | 1024                                                                                                                                                                        |
| 9.         | Fits the pattern above.                                                                   | , | 05.         | 8                                                                                     |     | 103. no real number                                                                                                                                                         |
| 10.        | Yes follows the division                                                                  | ( | 66.         | 16y <sup>2</sup>                                                                      |     | 104. 4                                                                                                                                                                      |
|            | pattern.                                                                                  |   | 67          | 9x <sup>10</sup>                                                                      | 30  | 105. $\frac{1}{3}$                                                                                                                                                          |
| 11         |                                                                                           |   | 67.         | 8                                                                                     |     | 106. $\frac{3}{2}$                                                                                                                                                          |
|            | like dividing by two in this                                                              | 1 | 68.         | $\frac{a^4}{b^4}$                                                                     |     | 2                                                                                                                                                                           |
|            | case.                                                                                     |   |             | x <sup>10</sup>                                                                       |     | 107. 10                                                                                                                                                                     |
| 12.        | 4                                                                                         |   | 69.         | y <sup>15</sup>                                                                       |     | 108. 2 <i>x</i>                                                                                                                                                             |
| 13.        | 25                                                                                        |   | 70.         | <u>−8α</u> 6                                                                          |     | 109. $\frac{1}{3x^2}$                                                                                                                                                       |
| 14.        | 2                                                                                         |   |             | 27y <sup>9</sup><br>a <sup>6</sup>                                                    |     | 110. $\sqrt{7}$                                                                                                                                                             |
| 15.        | $-4^{2}$                                                                                  |   | 71.         | h4                                                                                    |     | 111. $\sqrt[3]{3x}$                                                                                                                                                         |
| 16.        | $-9^{2}$                                                                                  |   | 72.         | 16x2                                                                                  |     | 112. 5√4                                                                                                                                                                    |
| 17.        | $\frac{2x^3}{2x^3}$ , $(5x)^0$                                                            |   | 12.         | 9y <sup>2</sup>                                                                       |     |                                                                                                                                                                             |
| 18.        | $(-3)^2$                                                                                  |   | 73.         | $\frac{16y^2}{9x^{10}}$                                                               |     | 113. $\frac{1}{\sqrt[5]{4}}$                                                                                                                                                |
| 19.        | -64                                                                                       |   | 74.         | 25a <sup>6</sup> b <sup>4</sup> c <sup>1,2</sup>                                      | " E | 114. $-\sqrt[3]{64}$                                                                                                                                                        |
| 20.        | -27                                                                                       |   | 74.         | n <sup>3</sup>                                                                        |     | 115. $\frac{1}{\sqrt[3]{64}}$                                                                                                                                               |
| 21.        | -16                                                                                       |   | 75.         | 8m³                                                                                   |     | 1                                                                                                                                                                           |
| 22.        | 1                                                                                         |   | 76.         | $27b^{6}$                                                                             |     | 116. 132                                                                                                                                                                    |
|            | 16<br>1                                                                                   |   | 77.         | 4x <sup>10</sup>                                                                      |     | 117. $-3x^{\frac{5}{2}}$                                                                                                                                                    |
| 23.        | 1 16                                                                                      |   |             | y <sup>12</sup>                                                                       |     | 118. $(2y)^{\frac{2}{2}}$                                                                                                                                                   |
| 24.        | 1<br>81                                                                                   |   | 78.         | $\frac{2a^2}{b^3} = \frac{2a^2}{1} \times \frac{1}{b^3}$ and $\frac{1}{b^3} = b^{-3}$ |     | 119. 44                                                                                                                                                                     |
| 25.        | 1 81                                                                                      |   | 79.         | $\frac{12x^3}{y} = \frac{12x^3}{1} \times \frac{1}{y}$ and $\frac{1}{y} = y^{-1}$     |     | 120. $4^{\frac{1}{7}}$                                                                                                                                                      |
| 26.        | $-\frac{1}{81}$                                                                           |   | 80.         | $3a^2$                                                                                | -   | 121. $(3x)^{-\frac{1}{5}}$                                                                                                                                                  |
| 27.        | 16                                                                                        |   | ou.         | b <sup>5</sup> 3a <sup>2</sup>                                                        |     |                                                                                                                                                                             |
| 28.        | 16                                                                                        |   | 81.         | b <sup>5</sup>                                                                        |     | 122. $27^{\frac{2}{3}} = \left(27^{\frac{1}{3}}\right)^2$                                                                                                                   |
| 29.        | -16                                                                                       |   | 82.         | $\frac{1}{8x^3y^3}$                                                                   |     | $27^{\frac{2}{3}} = (\sqrt[3]{27})^2$                                                                                                                                       |
| 30.        | 1                                                                                         |   | 02          | $3a^2$                                                                                |     | $27^{\frac{2}{3}} = (3)^2$                                                                                                                                                  |
| 31.        | -1                                                                                        |   | 83.         | b5                                                                                    |     | $27^{\frac{2}{3}} = 9$                                                                                                                                                      |
| 32.        | $\frac{1}{a^9}$                                                                           |   | 84.         | $\frac{a^2}{b^3}$                                                                     |     | $27\overline{3} = 9$                                                                                                                                                        |
| 33.        | α ·                                                                                       |   | 85.         | $2x^{5}y^{5}$                                                                         |     | 2                                                                                                                                                                           |
| 34.<br>35. | $g^4$ 15 $m^6$                                                                            |   | 86.         | 3a <sup>2</sup>                                                                       |     | 123. $\sqrt[5]{4^2}$ or $(\sqrt[5]{4})^2$                                                                                                                                   |
| 36.        |                                                                                           |   | 00.         | $b^3c^5$ $y^6z^2$                                                                     |     | $124 \sqrt[5]{4^3}$ or $(\sqrt[5]{4})^3$                                                                                                                                    |
|            | $a^{-2}$                                                                                  |   | 87.         | $\frac{y^2z^2}{x^8}$                                                                  |     | 125. $\sqrt[5]{4^4}$ or $(\sqrt[5]{4})^4$<br>126. $\frac{1}{\sqrt[5]{4^2}}$ or $\frac{1}{(\sqrt[5]{4})^2}$<br>127. $\frac{1}{\sqrt[5]{4^3}}$ or $\frac{1}{(\sqrt[5]{4})^3}$ |
| 38.        | $f^{2+x}$                                                                                 |   | 88.         | 9                                                                                     |     | 125, V4 67 (V4)                                                                                                                                                             |
| 39.        | $x^1$                                                                                     |   | 89.         | 2x <sup>7</sup> y <sup>11</sup>                                                       |     | 120. $\frac{5\sqrt{4^2}}{\sqrt[5]{4^2}}$                                                                                                                                    |
| 40.        | 2-2                                                                                       |   | 03.         | $9x^3y^3$                                                                             |     | 127 1 or 1                                                                                                                                                                  |
| 41.        | g <sup>4</sup> .                                                                          |   | 90.         | $\frac{4}{a^{15}b^9}$                                                                 |     | $(\sqrt[5]{4^3})^{1}$                                                                                                                                                       |
| 42.        | $m^4$                                                                                     |   | 91.         | 2                                                                                     |     | 128. $\frac{1}{\sqrt[5]{4^4}}$ or $\frac{1}{\left(\sqrt[5]{4}\right)^4}$                                                                                                    |
| 43.        | $t^5$                                                                                     |   |             | m <sup>2</sup> n  Romambar that a pagative                                            |     | ` '                                                                                                                                                                         |
| 44.        | x <sup>10</sup>                                                                           |   | 92.         | Remember that a negative<br>exponent can be evaluated                                 |     | 129. $\sqrt{4} = 2$                                                                                                                                                         |
| 45.        | $15m^6$                                                                                   |   |             | ·                                                                                     |     | 130. $\sqrt[3]{125} = 5$                                                                                                                                                    |
| 46.        | $5x^6$                                                                                    |   |             | by reciprocating the base,<br>therefore expressions like                              |     | 131. $(\sqrt[3]{8})^2 = 4$                                                                                                                                                  |
| 47.        | $-\frac{1}{2}a^2 = -\frac{a^2}{2}$                                                        |   |             |                                                                                       |     | 132. $(\sqrt[4]{81})^3 = 27$                                                                                                                                                |
| 48.        | $-\frac{1}{2}a^{2} = -\frac{a^{2}}{2}$ $\frac{4x^{7}}{5}$ $\frac{a^{3}}{3}$ $\frac{2}{3}$ |   |             | $a^{-3}$ become $\frac{1}{a^3}$ . Notice the exponent became positive.                |     |                                                                                                                                                                             |
| 49.        | $a^{\frac{3}{3}}$                                                                         |   | 02          | 4y <sup>12</sup>                                                                      |     | 133. $(\sqrt{4})^3 = 8$                                                                                                                                                     |
|            | 3 2                                                                                       |   | 93.         | 9x <sup>8</sup>                                                                       |     | 134. $\frac{1}{(\sqrt[4]{16})^3} = \frac{1}{8}$                                                                                                                             |
| 50.        | 8                                                                                         |   | 94.         | $\frac{27b^3}{8a^3}$                                                                  |     | 135. $\frac{1}{\left(\sqrt[3]{-27}\right)^2} = \frac{1}{9}$                                                                                                                 |
| 51.        | 15625                                                                                     |   | 95.         | 1                                                                                     |     | $(\sqrt[3]{-27})^{-}$ 9                                                                                                                                                     |
|            | $m^6 \ 8m^{12}$                                                                           |   |             | 8x <sup>9</sup> y <sup>6</sup><br>4x <sup>6</sup>                                     |     | 136. $\frac{1}{(\sqrt[3]{-8})^5} = -\frac{1}{32}$                                                                                                                           |
| 53.<br>54  | $m^6$                                                                                     |   | 96.         | $\overline{3y^7}$                                                                     |     |                                                                                                                                                                             |
| 55.        |                                                                                           |   | 97.         | $\frac{4x^6}{3y^7}$ $\frac{1}{2}$                                                     |     | 137. $9^{\frac{5}{2}} = (\sqrt{9})^5 = 243$                                                                                                                                 |
|            |                                                                                           |   |             |                                                                                       |     |                                                                                                                                                                             |

```
138. 1
 139. 1000
 139. \frac{}{27} 140. \frac{4}{9}
 141. 72
 142. 34<sup>1</sup>/<sub>3</sub>
 143. (-11)^{\frac{1}{3}}
 144. as
 145. 63
 146. x^{\frac{2}{3}}
 147. 65
 148. (2x)^{\frac{3}{4}}
 149. a^{-\frac{1}{3}}
 150. x 5
 151. x^{-\frac{3}{4}}
 152. 2^{\frac{1}{3}}b
 153. no real solution
 154. 1000
 155. \frac{9}{4} 156. 3
 157. −3
 158. 4
 159. a)-16 b) 16
 160. 4
 161. no real solution
 162. 5
 163. 4
 164. 3
 165. 0.32
 166. 1.98
 167. 0.55
 168. x^{\frac{11}{6}}
 169. Answered on page.
 170. x^{\frac{17}{12}}
 171. x^{\frac{19}{15}}
 172. 4 cm^2
 173. 5^{\frac{16}{15}} cm<sup>2</sup> \cong 5.57 cm<sup>2</sup>
 174. \frac{7}{2} or 3.5 cm<sup>2</sup>
 175. x^{-\frac{46}{15}} or \frac{1}{x^{\frac{46}{15}}}
 176. x^{\frac{17}{6}}
 177. c
 178. \epsilon
 181. a^{\frac{1}{18}}
 182. x^{\frac{1}{60}}
 183. F
 184. C
 185. A
 186. E
 187. C
 188. D
 189. D
 190. C,D
 191. B
192. \frac{3}{\frac{26}{193}}
```