Math $10 \quad$ Unit 1: Real Numbers and Radicals
Lesson 1: pages 1-7

Ms. A Sept $12 / 17$
REAL NUMBERS (R)
(can be placed on a number line)

RATIONAL NUMBERS (Q) (CAN BE WRITTEN as fraction)

- decimals DOteminate or repeat
ex: $7,3, \overline{6}, 5, \frac{1}{2}$
Three Subsets:
(1) Θ (1) INTEGERS $\{\ldots,-3,-2-1,0,1,2\}$
$\oplus \bigcirc$ (2) WHOLE WS (w) $\{0,1,2,3, \ldots\}$
(4) (3) NATURAL *S $(N)\{1,2,3, \ldots\}$

IRRATIONAL NUMBERS ($\frac{C^{100}}{Q}$) (CANNOT BE WRITTEN as fraction) - Decimals DO NDT terminate or repeat ex: $\pi, \sqrt{2}, 3.62489 \ldots$.

$$
\text { 豆) } Q, R
$$

(8) N, W, L, Q, R

Example: Place the following numbers on the number line below:

Practice work: pages 4-7 (including 7) ${ }^{1}$

由すtivo for

The Real Number System

Real numbers are the set of numbers that we can place on the number line.
Real numbers may be positive, negative, decimals that repeat, decimals that stop, decimals that don't repeat or stop, fractions, square roots, cube roots, other roots. Most numbers you encounter in high school math will be real numbers.

The square root of a negative number is an example of a number that does not belong to the Real Numbers.

There are 5 subsets we will consider.

Real Numbers

Name all of the sets to which each of the following belong?

$\begin{aligned} & 8 \\ & Q, Z, W, N \end{aligned}$	2. $\frac{4}{5}$	$\begin{aligned} & \text { 3. } \frac{15}{5}=3 \\ & Q, Z, W, N \end{aligned}$
4. $\sqrt{7}$ \bar{Q}	5. $\sqrt{0.5}$	6. $12.3 \overline{4}$ Q
$\begin{gathered} \text { 7. }-17 \\ Q, Z \end{gathered}$	8. $-\left(\frac{2}{3}\right)^{3}=-\frac{8}{27}$	9. 2.7328769564923 ...

Write each of the following Real Numbers in decimal form. Round to the nearest thousandth if necessary. Label each as Rational or Irrational.

10. $\frac{2}{9}$ Q $0.22 \overline{2}$	$\begin{align*} -3 \frac{3}{7} \\ -3.429 \end{align*}$	$\begin{aligned} & \text { 12. } \sqrt{8} \bar{Q} \\ & 2.828 \end{aligned}$
13. $\sqrt[3]{9}$ Q	14. $\sqrt[4]{256} \quad Q$	15. $\sqrt[5]{25} \bar{Q}$
2.080	4	1.904

16. Fill in the following diagram illustrating the relationship among the subsets of the real number system. (Use descriptions on previous page) .

A Reol Numbers
B Whole Numbers
c Notural Numbers
o_Potional Numbers

flategers
17. Place the following numbers into the appropriate set, rational or irrational.

$$
5, \quad \sqrt{2}, \quad 2 . \overline{13}, \quad \sqrt{16}, \quad \frac{1}{2}, \quad 5.1367845 \ldots, \frac{\sqrt{7}}{2}, \quad \sqrt[3]{8}, \quad, \quad \sqrt[3]{25}
$$

$\sqrt[3]{\sqrt[3]{8}} \frac{\frac{1}{2}}{\sqrt{16}}$

* 18. Which of the following is a rational number?
(b. $\frac{\sqrt{3}}{2}$
($6_{1} \frac{3}{7}$)
d. 12.356528349875 ...

20. To what sets of numbers does -4 belong?

21. Which of the following is an irrational number?
22. $\sqrt{\frac{16}{9}}$
b. π
\& $\frac{3}{8}$
d. $\sqrt[3]{27}$
23. To what sets of numbers does $-\frac{4}{3}$ belong?
a. natural and whole
b. irrational and real

E, integer and whole
(d. rational and real)

Your notes here...

\qquad
\qquad
\qquad
\qquad

The Real Number Line

All real numbers can be placed on the number line. We could never list them all, but they all have a place.

Estimation:

It is important to be able to estimate the value of an irrational number. It is one tool that allows us to check the validity of our answers.

Without using a calculator, estimate the value of each of the following irrational numbers. Show your steps!

22. $\sqrt{7}$

Find the perfect squares on either side of 7 .
$\rightarrow 4$ and 9
Square root $4=2$
Square root $9=3$
Guess \& Check:
$2.6 \times 2.6=6.76$
$2.7 \times 2.7=7.29$
$\therefore \sqrt{7}$ is about 2.6
25. $\sqrt[3]{11}$

Cube root $2=8$
cube root $3=27$
$\sqrt[3]{1122.2}$
28. Place the corresponding letter of the following Real Numbers on the number line below.
A. -6
B. $\frac{2}{3}$
C. $-\frac{2}{3}$
D. $5 \frac{1}{4}$
E. $\sqrt{2}$
F. $-\sqrt{7}$
G. $\frac{\sqrt{3}}{2}$
H. $-\frac{\sqrt{4}}{3}$

(1) pg 4-7
(2) Ma Review

Math 10

Unit 1: Real Numbers and Radicals
Lesson 2: pages 8-11

A. Factor (noun): divides evenly

Example: List the factors of $24.1,2,3,4,6,8,12,24$
B. Factor (verb): write as a product (of prime \#s)

Example: Factor 24.

$$
\begin{aligned}
& 24=2 \times 3 \times 2 \times 2 \\
&=2^{3} \times 3 \\
& \text { three as }
\end{aligned}
$$

C. Greatest Common Factor (GCF) [think: largest into all]

TO FIND GCF: List the primes that are in both numbers and multiply them.

Example \#1: Find the GCF of 36 \& 126.

126

$$
\begin{aligned}
a C F & =2 \times 3 \times 3 \\
& =18
\end{aligned}
$$

(1) Draw tree diagraMs

(2) Circle primes common to (All) trees
(3) Multiply circled \#s together
Example \#2: Find the GCF of $42,90, \& 84$.

90
$9^{11} 10$
$11(3) 1$
$3(5)$

84
$4^{\prime} 1$
21
031
3
3

$$
\begin{aligned}
G C F & =2 \times 3 \\
& =6
\end{aligned}
$$

D. Lowest Common Multiple (LCM)

Example \#1: List the first 6 multiples of 20: $20,40,60,80,100,120$

$$
\text { 24: } 24,48,72,96,120
$$

LCM of $20 \& 24$ is the lowest number that they both divide evenly into.

TO FIND LCM: List the largest power of each prime number \& multiply them.

Example \#2: Find the LCM of 45 \& 60.

$$
\begin{array}{cc}
45 & 60 \\
11 & 11 \\
95 & 611 \\
11 & 11 \\
33 & 23
\end{array}
$$

Example \#3: Find the LCM of 84, 28, \& 72.

$$
\begin{aligned}
84 & =2^{2} \times 3 \times(7) \\
28 & =7 \times 2^{2} \\
72 & =2^{3} \times 3^{2} \\
L C M & =2^{3} \times 3^{0} \times 7 \\
& =504
\end{aligned}
$$

PW: pg. 8-11

Factors, Factoring, and the Greatest Common Factor

We often need to find factors and multiples of integers and whole numbers to perform other operations.

For example, we will need to find common multiples to add or subtract fractions.
For example, we will need to find common factors to reduce fractions.

Factor: (NOUN)

Factors of 20 are $\{1,2,4,5,10,20\}$ because 20 can be evenly divided by each of these numbers.
Factors of 36 are $\{1,2,3,4,6,9,12,18,36\}$
Factors of 198 are $\{1,2,3,6,9,11,18,22,33,66,99,198\}$

Use division to find factors of a number. Guess and check is a valuable strategy for numbers you are unsure of.

To Factor: (VERB) The act of writing a number (or an expression) as a product.
To factor the number 20 we could write 2×10 or 4×5 or 1×20 or $2 \times 2 \times 5$ or $2^{2} \times 5$. When asked to factor a number it is most commonly accepted to write as a product of prime factors. Use powers where appropriate.

Eg. $20=2^{2} \times 5 \quad$ Eg. $36=2^{2} \times 3^{2}$ Eg. $198=2 \times 3^{2} \times 11$
A factor tree can help you "factor" a number.

$\therefore \quad 36=2^{2} \times 3^{2}$

Prime:
When a number is only divisible by 1 and itself, it is considered a prime number.

Write each of the following numbers as a product of their prime factors.

$100=5^{2} \times 2^{2}$
30. 120

$220: 5 \times 3 \times 2^{3}$

$250=5^{3 \times 2}$

Write each of the following numbers as a product of their prime factors.

At times it is important to find the largest number that divides evenly into two or more numbers...the Greatest Common Factor (GCF).

Challenge:
35. Find the GCF of 36 and 198.

$$
\begin{aligned}
& 36 \div 2=18 \\
& 198 \div 2 \div 18
\end{aligned}
$$

198

$$
36=3^{2} \times 2^{2}
$$

$$
198=11 \times 3^{2} \times 2
$$

$$
3^{2} \times 2=18
$$

Challenge:

36. Find the GCF of 80,96 and 160 .

$$
80=40,20,16 \quad G C F=16
$$

$2^{4}: 16$

Some Notes... \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Find the GCF of each set of numbers.

43. Find the first seven multiples of 8 .

$$
8,16,24,32,40,48,56
$$

Challenge
44. Find the least common multiple of 8 and 28.

$$
\begin{gathered}
28,56 \\
\text { LCM }=56
\end{gathered}
$$

Multiples of a number.

Multiples of a number are found by multiplying that number by $\{1,2,3,4,5, \ldots\}$.

Find the first five multiples of each of the following numbers.
45. 8
$8,16,24,32,40$,
46. 28
$28,56,84,112,140$
47. 12
$12,24,36,48,60$

Find the least common multiple of each of the following sets of numbers.

Math $10 \quad$ Unit 1: Real Numbers and Radicals
Lesson 3: pages 12-17

Ms. A
Sept $19 / 17$
(1.) $\sqrt{4+5}=\sqrt{9}=3$
B
E
D
M
A
(3) $\sqrt{\frac{49}{81}}=\frac{\sqrt{49}}{\sqrt{81}}=\frac{7}{9}$

$$
(24)^{2}=576
$$

NO WAY

$$
(-24)^{2}=+576
$$

TO GET NEGATIVE
\qquad

6. $\sqrt{2 \cdot 2 \cdot 3 \cdot 3 \cdot 11 \cdot 11 \cdot 11 \cdot 11}=\sqrt{527076}$

$$
=726
$$

7. $\sqrt{25 x^{2}}=\sqrt{25} \cdot \sqrt[2]{x^{2}}$

$$
=5 x
$$

(8.) $\sqrt{10\left(x^{6}\right)}=\sqrt{100} \cdot \sqrt[2]{x^{6}}$

$$
\begin{aligned}
& =\sqrt{100} \cdot \sqrt[2]{x^{3}} \cdot \sqrt[3]{x^{7}} \cdot \sqrt[5]{x^{3}} \\
& =10 x^{3} \\
\sqrt[3]{27 x^{6}} & =\sqrt[3]{27} \times \sqrt[3]{x^{6}} \\
& =3 x^{2}
\end{aligned}
$$

10. Use the prime factorization of 1728 to determine if it is a perfect cube. If so, determine $\sqrt[3]{1728}$.

perfect cube! \rightarrow All factors go in a group of 3

$$
\sqrt[3]{1738}=10
$$

Radicals:

Radicals are the name given to square roots, cube roots, quartic roots, etc.

$$
\sqrt[n]{x}
$$

The parts of a radical:

PERFECT SQUARE NUMBER: A number that can be written as a product of two equal factors.
$81=9 \times 9\} 81$ is a perfect square. Its square root is 9 .

First 15 Perfect Square Numbers:
$1,4,9,16,25,36,49,64,81,100,121,144,169,196,225, \ldots$
Your notes here...
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Evaluate the following.

Cube Roots:

PERFECT CUBE NUMBER: A number that can be written as a product of three equal factors.

Cube root of 64 looks like $\sqrt[3]{64}$.
The index is 3 . So we need to multiply our answer by itself 3 times to obtain $64.4 \times 4 \times 4=64$
First 10 Perfect Cube Numbers: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, ...

> EX. $125=5^{3}$
> $(5)^{1} 25$

Evaluate or simplify the following.
69. $\sqrt[3]{8}$

Explain what the small 3 in this problem means.
It's asting for the cube root = the answer will multiply itself 3 times to obtain $8+(2)$.
70. $\sqrt[3]{8}=2$

How could a factor tree be used to help find $\sqrt[3]{125}$?
DO a factor tree for I2S and their should be
72. $5 \times 5 \times 5$ Evaluate $\sqrt[3]{125}=5$
75. $\sqrt[3]{-8}=-2$
74. $\sqrt[3]{1000}=10$
77. $\sqrt[3]{343}=7$
78. $\sqrt[3]{-216}=-6$
factorization can be used to evaluate $\sqrt[3]{27}$.
Find the prime factors of 27 and there should
Find the prime foc
of 27 and there
be $3 \times 3 \times 3$.-.....
79. $\sqrt[3]{27} \times \sqrt{20 \times 5}$
$3 \times 10=30$
Find the prime foc
of 27 and there
be $3 \times 3 \times 3$.-.....
79. $\sqrt[3]{27} \times \sqrt{20 \times 5}$
$3 \times 10=30$
Find the prime foc
of 27 and there
be $3 \times 3 \times 3$.-.....
79. $\sqrt[3]{27} \times \sqrt{20 \times 5}$
$3 \times 10=30$
76. Show how prime

Other Roots.

Using a calculator, evaluate the following to two decimal places.

100. Describe the difference between radicals that are rational numbers and those that are irrational numbers.
rational
$\sqrt{16}$
iriat mol

- $\sqrt{13}$

All radicals that eave a rational are perfect squares, cubes, etc. All radicals that equal irrational ifs
3. Divide \# of decimals by index

Evaluate or simplify the following.

122. Use the prime factors of 324 to determine if 324 is a perfect square. If so, find $\sqrt{324}$.
Answer:
$324=2^{2} \times 3^{4}$ if fully factored
$\therefore \sqrt{324}=\sqrt{2 \times 2 \times 3^{2} \times 3^{2}}$
$\therefore \sqrt{324}=\sqrt{\left(2 \times 3^{2}\right) \times\left(2 \times 3^{2}\right)}$
$\therefore \sqrt{324}=\left(2 \times 3^{2}\right)$
$\therefore \sqrt{324}=18$
YES
124. Use the prime factors of 1728 to determine if it is a perfect cube. If so, find $\sqrt[3]{1728}$.
(2)
(2) ${ }^{(2)}$
123. Use the prime factors of 576 to determine if 576 is a perfect square. If so, find $\sqrt{576}$.

$576: 3^{2} \times 26$

$\sqrt{576}=\sqrt{3^{2} \times 26}$ (3) $192 \quad \sqrt{576}=\sqrt{\left(3 \times 2^{3}\right) \times\left(3 \times 2^{3}\right)}$
(2) 96

$=\sqrt{576}=\left(3 \times 2^{3}\right)$
$=\sqrt{576}: 24 \quad Y E S$
118. What would be the side length of a square with an area of $1.44 \mathrm{~cm}^{2}$?

2
125. Use the prime factors of 5832 to determine if it is a perfect cube. If so, find $\sqrt[3]{5832}$.

Test yourself! How are you doing so far? Remember-- Mid-Point Quiz NEXT class!!

1. List 520 as a product of primes.

$$
\begin{aligned}
& 5 \partial 0 \\
& 5 \prime 10 \\
& 5 \rho_{1} 1 \\
& 2 \partial 6 \\
& 20 \\
& 213
\end{aligned}
$$

$$
=2 \times 2 \times 13 \times 2 \times 5
$$

$$
=2^{3} \times 5 \times 13
$$

2. Find the GCF of 108 and 120 .

$$
\begin{aligned}
G C F & =3 \times 2 \times 2 \\
& =12
\end{aligned}
$$

4. Which perfect squares would be used to estimate $\sqrt{53}$?

$$
49 \& 64
$$

5. Evaluate the following to the nearest thousandth:
dh:

$$
\begin{aligned}
& \frac{\sqrt{45}-\sqrt[3]{18}}{2} \\
= & 2.044
\end{aligned}
$$

3. To which sets of numbers does -13 belong?
R real 所
Q rational $\# 5$
z integers

Ms. A
Sept $21{ }^{5 x}$
Part 1: Undefined Roots

What values of square roots are UNDEFINED? (ie: NO real solution)
NEGATIVE

What values of x make these roots defined?

1. $\sqrt{x+4}$

$$
\begin{aligned}
& x+4 \\
& x+4 \geq 0 \\
& -4 \geq x-4
\end{aligned}
$$

2. $\sqrt{10-5 x}$

$$
\begin{aligned}
10-5 x & \geq 0 \\
+8 x & +5 x
\end{aligned}
$$

Part 2: Pythagoras $\left(a^{2}+b^{2}=c^{2}\right)$ can only be used if a triangle has a \qquad 90° angle!

$$
\frac{10^{2}}{}{ }^{2} \frac{5 x}{5}
$$

Calculate the perimeter of the following triangles.
1.

$\frac{(6)}{\sqrt{30}} \mathrm{~mm}$

$$
p=a+b+c
$$

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
a^{2}+\sqrt{30} & =8^{2} \\
a^{2}+30 & =64 \\
-30 & -30 \\
\sqrt{a^{2}} & =\sqrt{34} \\
a & =\sqrt{34} \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
\text { Perimeter }=@+(C)+c & =5+\sqrt{51}+\sqrt{76} \\
& =20.9 \mathrm{~cm}
\end{aligned}
$$

Part 3: Squares and Cubes

$$
=\sqrt{34}+\sqrt{30}+8
$$

$$
=19.3 \mathrm{~mm}
$$

1. Is this a perfect square? $\sqrt[(2)]{2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \frac{3 \cdot 5}{71}}$ NOT a perfect square!
2. Is this a perfect cube? $\sqrt[3]{3 \cdot 7 \cdot 3 \cdot 7 \cdot 3 \cdot 7}$

YES!
3. The volume of a cube is $729 \mathrm{~cm}^{3}$. Find the surface area of the cube.

$$
\begin{aligned}
& \text { (1) } V=x \cdot x \cdot x \\
& x_{x} \\
& \begin{array}{c}
V=x^{3} \\
\sqrt[3]{729}=\sqrt[3]{x^{5}}
\end{array} \\
& 9=x \\
& \text { (2) } 5 A \text { : } \\
& \text { amen of one }=9.9=81 \\
& \text { face }
\end{aligned}
$$

$$
\begin{aligned}
& =486 \mathrm{~cm}^{2}
\end{aligned}
$$

126. An engineering student developed a formula to represent the maximum load, in tons, that a bridge could hold. The student used 1.7 as an approximation for $\sqrt{3}$ in the formula for his calculations. When the bridge was built and tested in a computer simulation, it collapsed. The student had predicted the bridge would hold almost three times as much.

The formula was: $5000(140-80 \sqrt{3})$
What weight did the student think the bridge would hold?
127. For what values of x is $\sqrt{x-2}$ not defined?

$$
x \leq 1 \text { or } x<2
$$

128. For what values of x is $\sqrt{x+3}$ not defined

 Calculate the weight the bridge would hold if he used $\sqrt{3}$ in his calculator instead.

129. Calculate the perimeter to the nearest tenth. The two smaller triangles are right triangles.

$p=21.7$ Units ty

Calculate the area of the shaded region.

$\sqrt{10} \mathrm{~cm}$

$$
7.072067812
$$

131. To the nearest tenth:

$S_{132 \text {. As an expression using radicals: }}$
 (you may need to come back to this one)

$$
\begin{aligned}
& \sqrt{10} \times 5-\sqrt{6} \times \sqrt{3} \\
& \sqrt{50}-\sqrt{18} \\
& \sqrt{25 \times 2}-\sqrt{2 \times 9} \\
& 5 \sqrt{2}-3 \sqrt{2}
\end{aligned}
$$

(33.) Consider the square below. Why might you think $\sqrt{ }$ is called a square root?

$\sqrt{\text { rescaled square }}$ rootolc it wants to know tine reavals values of the sides of the savoie.
135. Find the side length of the square above.

137. Why do you think 81 is called a "perfect square" number? Because 81 is the area of a square $(a \times 9 \rightarrow n 0$ decimals)
139. Find the surface area of the following cube.

141. A cube has a surface area of $294 \mathrm{~m}^{2}$. Find its edge length in centimetres.

Page $19 \mid$ Real Numbers Key 136. Find the edge length of the cube above. pivitipl y and think $\sqrt[3]{ }$ is called a cube root?
bic cube root is like finding
13 side lengths of a cube
 b / c the cube has equal number that

$$
\sqrt[3]{64}=4 \mathrm{~cm}
$$

138. Why do you think 729 is called a "perfect cube" number? because 729 is the volume of a cube $(1 \times w \times h) \rightarrow$ cube: all equal side lengths/ widns/nerohts ($9 \times 9 \times 9$)
139. Find the surface area of the following cube.

140. A cube has a surface area of $1093.5 \mathrm{~m}^{2}$. Find its edge length in centimetres.

Copyright Mathbeacon.com. Use with permission. Do not use after June 2015

Term	Definition	Example
Power	$2^{1}, 2^{2}, 2^{3}, 2^{4}, \ldots$ are powers of 2 . A power is made up of a base and an exponent.	
Exponent	The smaller number written to the upper right of the base that tells you how many times to multiply the base by itself.	$2^{4}=2 \times 2 \times 2 \times 2$ 4 is the exponent.
Base	The "larger" number that the exponent is applied to. (The bottom number in a power)	$2^{4}=2 \times 2 \times 2 \times 2$ 2 is the base.
Rational number	Numbers that can be written as fractions.	
Rational Exponent	The exponent on a power is a rational number (fraction). $x^{\frac{2}{3}}=(\sqrt[3]{x})^{2}$	$27^{\frac{2}{3}}=(\sqrt[3]{27})^{2}=(3)^{2}=9$
Integral number	An integer $\{. . .3,-2,-1,0,1,2,3, \ldots\}$.	
Integral Exponent	The exponent on a power is an integer.	Such as x^{2}, x^{-3}.
Coefficient	The numbers in front of the letters in mathematical expressions.	In $3 x^{2}, 3$ is the coefficient.
Variable	The letters in mathematical expressions.	In $3 x^{2}$, x ' is the variable.
Undefined	If there is no good way to describe something, we say it is undefined.	$\frac{3}{0}$ is undefined because we cannot divide by zero.
Radical form	$(\sqrt[3]{8})^{2}$ is in radical form.	
Exponential Form	$8^{\frac{2}{3}}$ is in exponential form.	
Zero Exponent	Any expression to the power of 0 will equal 1.	$(2 x y z)^{0}=1$
Negative Exponent	Reciprocate the base and perform repeated multiplication OR use repeated division.	$5^{-3}=\left(\frac{1}{5}\right)^{3}=\frac{1}{5} \times \frac{1}{5} \times \frac{1}{5}=\frac{1}{125}$
Multiply Powers with the Same base	Add the exponents.	$m^{5} \times m^{2}=m^{7}$
Dividing Powers with the same base.	Subtract the exponents.	$q^{6} \div q^{4}=q^{2}$
Power of a Power	Multiply the exponents.	$\left(x^{2}\right)^{4}=x^{8}$
Power of a Product	Apply the exponent to all factors.	$\left(3 x^{2}\right)^{3}=27 x^{6}$
Power of a Quotient	Apply the exponent to both numerator AND denominator	$\left(\frac{a}{b}\right)^{3}=\frac{a^{3}}{b^{3}}$

Unit 2: Exponents

Lesson 1: pages 1-9

Vocabulary:

Exponent Laws:

From Math 9, you should have learned how to simplify the following monomial expressions using the following exponent laws:

Note: DO NOT use exponent laws when bases aren't equal

Example: Evaluate or simplify the following expressions.

1. $3^{2}=3 \cdot 3=9$
2. $(-3)^{2}=-3 \cdot-3=9$
3. $\theta_{3^{2}}=-3 \cdot 3=-9$
4. $-5^{0}=$
$\neq(-5)^{0}=1$
5. $6^{-2}=\frac{1}{6^{2}}=\frac{1}{36} \quad<$ Evaluate
6. $k^{-2}=-\frac{1}{2^{4}}=-\frac{1}{16}$
7. $(-2)^{-4}=\frac{1}{(-2)^{4}}=\frac{1}{16}$
8. $x^{3} \cdot x^{4}=x^{3+4}=x^{7}$
(9.) $x^{3 \cdot} \cdot \frac{1}{4}=x^{\frac{3.4}{1.4}+\frac{1}{4}} \rightarrow x^{\frac{18}{4}+\frac{1}{4}}=x^{13 / 4}$ or $x^{31 / 4}$
$10.6 m^{4} \cdot 2 m \div 3 m^{-2}=4 m^{7}$
$6 \cdot 2 \div 3=4$
ex: $x^{2} \cdot x^{\frac{3}{4}}$

$$
\underbrace{}_{m^{5} \div m^{-2}=m^{5} \stackrel{m}{1}^{m^{\prime}} \div m^{-2}=m^{7}}
$$

$$
\begin{aligned}
& =x^{2+\frac{3}{4}} \\
& =x^{2 \frac{3}{4}}=x^{\frac{11}{4}}
\end{aligned}
$$

PW: pgs 1-9 for Thursday
(4a)

$$
{ }^{1} x \quad a^{6} \quad \square
$$

(49)

$$
\frac{\partial}{a^{3}} \div \frac{6}{a^{6}} \rightarrow \frac{x}{a^{3}} \times \frac{a^{6}}{b_{3}}=\square
$$

Introduction to Exponents

Challenge \#1: Solve each riddle using any strategy that works.

1. Evaluate. $3^{2} \times 3^{2}$	2. Evaluate. $2^{2} \times 2^{2} \div 2^{3}$	3. Evaluate. $x^{3} \times x^{5}$	4. Evaluate. $8 x^{4} \div 4 x^{3}$
$2!2: 4 \quad 3^{4}=81$	$=2^{4} \div 2^{3}$	x^{8}	$\frac{8 x^{4}}{4 x^{3}}=2 x^{1}$
Rate the riddle:	Rate the riddle:	Rate the riddle:	Rate the riddle:
Easy, Medium, Hard	Easy, Medium, Hard	Easy, Medium, Hard	Easy, Medium, Hard
EOSY	EdSy	Easy	Easy

5. Find a strategy that is different from the one you used in Question 1 and solve the question again.

$$
\begin{aligned}
& 3 \times 3 \times 3 \times 3: 34=81 \\
& \text { (Expand) }
\end{aligned}
$$

6. Find a strategy that is different from the one you used in Question 4 and solve the question again.

$$
\begin{aligned}
8 & =4=2 \\
x^{4} & =x^{3}=x x x x-x x x: x \\
& =2 x
\end{aligned}
$$

What is an Exponent?

Exponents are symbols that indicate an operation to be performed on the base.
positive exponents $\rightarrow \quad$ Repeated Multiplication
negative exponents $\rightarrow \quad$ Repeated Division
$\boldsymbol{b}^{\boldsymbol{e}} \quad \boldsymbol{b}$ is the base, and ${ }^{\boldsymbol{e}}$ is the exponent. Together, we call them a power.
Some examples...
$2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}$ are the first five powers of $2 . \quad x^{1}, x^{2}, x^{3}, x^{4}, x^{5}$ are the first five powers of x.

Your Notes Here...

Positive Integral Exponent (multiplication) $a^{n}=$$1 \times a \times a \times a \times \ldots \times a$ (nfactors) Eg. $3^{4}=1 \times 3 \times 3 \times 3 \times 3=81$	Zero Exponent	Negative Integral Exponent (repeated division) $a^{-n}=1 \div a^{n}$
	$a^{0}=1,(a \neq 0)$	$=\frac{1}{a^{n}}$
	Eg. $5^{0}=1,\left(\frac{3}{2}\right)^{0}=1$	Eg. $5^{-2}=\frac{1}{5^{2}}=\frac{1}{25}$

Challenge \#2
7. Evaluate each of the following and examine the pattern:
$2^{4}=16$
$2^{3}=8$
$2^{2}=4$
$2^{1}=2$
$2^{0}=1$
$2^{-1}=\frac{1}{2}$
$2^{-2}=\frac{1}{4}$
$2^{-3}=\frac{1}{8}$
$2^{-4}=\frac{1}{16}$
8. What patterns do you notice in the list you created to the left?
If you divide each by 2 (when going down) or multiply each by 2 (when going up) you will get the answer
9. Does the value of 2^{0} make sense when put into this list? yes, bia if you use the pattern. I mentioned above it makes sense.

$$
2 \div 2=1
$$

10. Do negative exponents make sense in this list? yes you just have to change the negative to a positive and put it under $\left.1 .\left(2^{-2}=\frac{1}{2^{2}}=\frac{1}{4}\right]\right)$
Why might people say negative exponents mean
(11.) Why might people say negative exponents mean "repeated division?"
Because going from a negative exponent to an even more negative exponent just means divide by 2 here. (you divide by 2 over and over="repeatedy")

12. Identify the base in the following equation. $(4)^{3}=64$ \square	13. Identify the power in the following equation. $\begin{gathered} \left(2^{5}=32\right. \\ 2^{5} \end{gathered}$	14. Identify the exponent in the following equation. $-3^{2}=-9$ \square
15. Which of the following is equivalent to -16 ? $\begin{aligned} & -4^{2}=-16 \\ & (-4)^{2}=+16 \\ & 4^{-2}=\frac{1}{16} \\ & -4^{-2}=\frac{1}{-4^{2}}=\frac{1}{-16} \end{aligned}$	16. Which of the following is equivalent to -81 ? $\begin{aligned} &\left(-9^{2}\right)=-81 \\ &(-3)^{4}:+81 \\ & 9^{-2}: \frac{1}{81} \\ &-3^{-4}: \frac{1}{-3^{4}}=\frac{1}{-81} \end{aligned}$	17. Which of the following are equivalent to 1. $\begin{array}{cc} -3^{0}\left(\frac{2 x^{3}}{2 x^{3}}\right. & (5 x)^{0} \\ \frac{1}{7} \\ -1 \times 1=-1 & \frac{1}{8} \\ \text { correction }\|x\|^{0}=1 & +1 \end{array}$
18. Which of the following is equivalent to 9 ? $\begin{aligned} & -3^{2}=-9 \\ & (-3)^{2}=+9 \\ & 3^{-2}=\frac{1}{9} \\ & (-3)^{-2}=\frac{1}{(-3)^{2}}=\frac{1}{9} \end{aligned}$	19. Evaluate. $\begin{aligned} =-1 \times 2 & \times 2 \times 2 \times 2 \times 2 \times 2 \\ & =-64 \\ & -2^{6}=-1 \times 2^{6} \\ & -1 \times 64=-64 \end{aligned}$	20. Evaluate. $\begin{align*} & (-3)^{3} \\ & -3 \times-3 \times-3=-27 \end{align*}$
21. -4^{2} $-1 \times 16=-16$	$\text { 22. }(-4)^{-2} \text { (} \begin{aligned} & \frac{1}{(-4)^{2}} \rightarrow \frac{1}{16} \end{aligned}$	23. -4^{-2} $\frac{1}{-4^{2}}=\frac{1}{-1 \times 16}=\frac{1}{-16}$ *BOOK SAYS $\left(-\frac{1}{16}\right) *$
24. 3^{-4} $\frac{1}{3^{4}}=\frac{1}{81}$ $\begin{array}{c\|c} =\frac{1}{3^{4}} & =1 \div 3 \div 3 \div 3 \div 3 \\ =\frac{1}{81} & =1 \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \\ =\frac{1}{81} \end{array}$	$\begin{aligned} & \text { 25. }(-3)^{-4} \\ & \frac{1}{(-3)^{4}}=\frac{1}{-3 \times-3 \times \cdot 3 \times-3} \\ & =\frac{1}{81} \end{aligned}$	26. -3^{-4} $\frac{1}{-34}=\frac{1}{-1 \times 34}=\frac{1}{-81}$ - BOO KS SfYYs
27. $\begin{aligned} & 4^{2} \quad 4 \times 4=16 \\ & 16 \end{aligned}$	$\begin{aligned} & \text { 28. }(-4)^{2} \\ & -4 \times-4=16 \end{aligned}$	$\text { 29. } \begin{aligned} &(4)^{2} \\ &-1 \times 4 \times 4=-1 \times 16 \\ &=-16 \end{aligned}$
30. $5^{0}=1$	31. $-5^{0}:-1 \times 1=-1$	32. $\left(\frac{34 a^{2}}{2 x}\right)^{0}=\frac{1}{1}=1$

The Exponent Laws:

Challenge \#3
33. Multiply.

Explain your steps.

when bases a re the same and powers are being multiplied, add exponents \qquad

Challenge \#4

34. Divide.

Explain your steps.

when bases are the same ond powers are being divided, subtract exponents.

Challenge \#5
35. Multiply.

$$
\begin{gathered}
5 m^{4} \times 3 m^{2} \\
5 \mathrm{~m}^{4} \times 3 \mathrm{~m}^{2} \\
(5 \times 3) \times\left(\mathrm{m}^{4} \times \mathrm{m}^{2}\right) \\
15 \mathrm{~m}^{6}
\end{gathered}
$$

Explain your steps.

When powers are multipised, and bases are the same, muitiply the coefficients and add the exponents.

Simplify the following, write your answers using exponents.

$$
\text { 36. } a^{3} \times a^{6}=a^{3+6}=\begin{aligned}
& =a^{9}
\end{aligned}
$$

42. $m^{4} \div m^{0}$
$m^{4} \div m^{0}=m^{4}$
43. $5 m^{4} \times 3 m^{2}$
$=5 \times 3 \times m^{4+2}$ $=15 \mathrm{~m}^{6}$
44. $t^{0} \div t^{-5}$

45. $-10 x^{4} \div-2 x^{-2}$
$=(-10 \div-2) \times\left(x^{4} \div x^{-2}\right)$

46. $\frac{2}{a^{3}} \div \frac{6}{a^{6}}$
$\frac{2}{a^{3}} \div \frac{6}{a^{6}}$
$\frac{8}{1} \times \frac{a^{x^{3}}}{a^{3}}=\frac{a^{3}}{3}$
(38.) $f^{2} \times f^{x}$

$$
\text { 41. } \begin{aligned}
& g^{7} \div g^{3} \\
& =g^{7-3} \\
& =g^{4}
\end{aligned}
$$

44. $\frac{x^{13}}{x^{3}}$

$$
x^{13} \div x^{3}: x^{10}
$$

$$
\text { (47.) } \frac{4 a^{4}}{-8 x^{2}}
$$

$$
-\frac{1 a^{2}}{2}=-\frac{a^{2}}{2}=
$$

(50.) Evaluate. Add the exponents.

$$
\begin{aligned}
& x^{5} \times x^{2}=x^{5+2}=x^{7} \\
& a^{\frac{2}{3}} \times a^{\frac{1}{3}}=a^{\frac{3}{3}}=a^{1}=a \\
& 3 x^{2} \times 2 x^{5}=3 \times 2 \times x^{2} \times x^{5}=6 x^{7}
\end{aligned}
$$

Multiplying Powers with the same Base:
Subtract the exponents.
SUbTract the exponents.

Eg.
Dividing Powers with the same Base:

Eg.

$$
\begin{aligned}
& d^{4} \div d^{3}=d^{4-3}=d^{1}=d \\
& \frac{y^{6}}{y^{-2}}=y^{6-(-2)}=y^{8}
\end{aligned}
$$

48. $\frac{2}{3} x^{3} \times \frac{6}{5} x^{4}$

$$
\left(\frac{2}{13} \times \frac{x^{2}}{5}\right) \times\left(x^{3} \times x^{4}\right)
$$

$$
5-1+2
$$

\square

Math 10

$$
a^{-m}=\frac{1}{a^{m}} \text { Unit 2: Exponents }
$$

\qquad

Warm-Up:

1. $5^{-2}=\frac{1}{5^{2}}=\frac{1}{25}$
2. $100 x^{4} \div 50 x^{8}=2 x^{4-8}$
3. $8^{-1}=\frac{1}{8^{1}}=\frac{1}{8}$
4. $a^{9} \div a^{12}$

$$
=2 x^{-4}=\frac{2}{x^{4}}
$$

$(-2)^{-4}$

$$
=a^{9-12}=a^{-3}=\frac{1}{a^{3}}
$$

3. $\begin{aligned} 3^{-3} & =\frac{1}{3^{3}}=\frac{1}{\partial 7}=6^{2-3}= \\ \left.\text { 4. }(-2)^{4}\right) & =(-\partial)^{4}=-2 \cdot-2 \cdot-2 \cdot-2=16\end{aligned}$

$$
\begin{aligned}
& 6^{2} \div 6^{3} \\
= & 6^{2-3}=6^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& b^{-1}=1 x^{-1}=\frac{1}{x}=\frac{1}{x} \\
& \text { 11. }\left(\frac{2}{5}\right)^{-3}=\frac{5^{-3}}{5^{3}}=\frac{125}{8} \\
& { }^{-12.6 m^{12} \div 12 m^{12}}=\frac{6}{12} \rightarrow \frac{1}{2} m^{12-12} \\
& \frac{1}{2} 2^{7=1}
\end{aligned}
$$

5. ${\left(\frac{3}{10}\right)^{-2}}_{\sqrt{2}}=\left(\frac{3^{-2}}{10^{-2}}\right)=\frac{1}{3^{2}} \quad \frac{10^{2}}{3^{2}}=\frac{100}{9} 12.6 \mathrm{~m}^{12} \div 12 \mathrm{~m}^{12}=\frac{6}{12} \rightarrow \frac{1}{2} \mathrm{~m}^{12-12}$
6. $a^{\frac{8}{3} \times a^{\frac{1}{3}}}=a^{\frac{8}{3}+\frac{1}{3}}=a^{\frac{a}{3}}=a^{313.30 m^{8} \div-10 m^{1}}=-3 m^{8-1}=-3 m^{7}=\frac{1}{2}$

Exponent Laws:

From Math 9 , you should have learned how to simplify the following monomial expressions using the following exponent laws:

Note: DO NOT use exponent laws when bases aren't equal

(More Complicated) Examples () : Evaluate or simplify the following expressions.

1. $\left(\frac{2 x^{4} y^{-9}}{3 x^{-2} y}\right)^{-2} \rightarrow\left(\frac{3 x^{-2} y}{\partial x^{4} y^{-9}}\right)^{2}$
(1) Simplify y in brackets: $\frac{2 x^{4} y^{-9}}{3 x^{-2}}=\frac{2 x^{4} x^{2}}{3 y^{9} y^{1}}=\frac{2 x^{6}}{3 y^{10}}$
(2) $\left.\left(\frac{\partial x^{6}}{3 y^{10}}\right)^{-2}\right) \frac{\left(2-\frac{2^{-2}}{\sqrt{2}^{-3}}\left(x^{-12}\right)\right.}{\left(y^{-20}\right)}$
$=\frac{3^{2} y^{20}}{\partial^{2} x^{12}}=\frac{9 y^{20}}{4 x^{12}}$
$=(-10)^{2} x^{2} y^{8} \cdot 5^{-2} x^{-4} y^{-6}$
$=100 x^{2} y^{8} \cdot 5-2 x^{-4} y^{-6}$
$\begin{array}{ll}=100 x^{2} y^{8} \frac{1}{5^{2}} x^{-4} y^{-6} & \frac{100}{1} \times \frac{1}{25}=\frac{100}{25}=4\end{array}$
$=4 x_{5}^{-2} y^{2} \quad \hat{1}_{1}$
$=\frac{4 y^{2}}{x^{2}}$

$$
\begin{aligned}
& a^{m} \times a^{n}=a^{m+n} \\
& a^{-m}=\frac{1}{a^{m}}=5^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2} \\
& \text { PW: pg 10-12 (incl vding) }
\end{aligned} a^{\frac{1}{a^{m}}}=\frac{5^{-5}}{\frac{\frac{1}{5}}{5}}
$$

51. Evaluate. = get \# ans wert A

$$
5^{2 \times 3=6} 5^{\left(5^{2}\right)^{3}} \rightarrow 5^{6}=15625
$$

Explain your steps.
When a power is raised to an exponent multiply the exponents 15625

Challenge \#7

52. Simplify.

[Power of a power]

Explain your steps.
When a power is raised to an exponent multiply the exponents \qquad

Challenge \#8
53. Simplify.

\[\)| When a power is raised to an |
| :---: |
| $2^{3} \times m^{4 \times 3}$ |
| $8 \times m^{12}$ |
| $8 m^{22}$ |

\] | exponent put the exponent on |
| :--- |

Simplify the following.

(58) $\left(2 c^{4} d^{3}\right)^{-3}$
(59) $\left(-3 x^{-2} y^{3}\right)^{-4}$
57. $\left(2 m^{4}\right)^{3}$
$2^{-3} \times c^{4 x-3} \times d^{3 x-3}$
$\frac{1}{8} \times C^{-12} \times d^{-9}$

$$
=2^{3} m^{4 \times 3}
$$

$$
=8 m^{12}
$$

60. $\left(3 x^{-2} y^{-3}\right)^{-3}$
$3^{-3} \times x^{-2 x-3} \times y^{-3 x-3}$
$\frac{1}{27} \times x^{6} \times y^{9}$

$\frac{x^{6} y^{9}}{27}$

Power of a Power:

Multiply the exponents.
$E g\left(5^{2}\right)^{3}=(5 \times 5)^{3}$.
$=(5 \times 5)(5 \times 5)(5 \times 5)$
$=5 \times 5 \times 5 \times 5 \times 5 \times 5$
$=5^{6}$

THE RULE:

$$
\left(a^{m}\right)^{n}=a^{m \times n}
$$

If you have a power of a power ... multiply exponents.

Eg. $\left(x^{2}\right)^{5}=x^{2 \times 5}=x^{10}$

Power of a Product:

Apply the exponent to all factors.

Eg. $(5 \times 2)^{3}$

$$
\begin{aligned}
& =(5 \times 2) \times(5 \times 2) \times(5 \times 2) \\
& =5 \times 5 \times 5 \times 2 \times 2 \times 2 \\
& =5^{3} \times 2^{3}
\end{aligned}
$$

THE RULE:

$$
(a b)^{m}=a^{m} b^{m}
$$

If you have a power of a product ... apply the exponent to EVERY factor in the product.

Eg. $\left(a^{2} b^{3}\right)^{-3}=a^{2 x-3} b^{3 x-3}=a^{-6} b^{-9}$
$\left(2 c^{4} d^{3}\right)^{-3}=2^{-3} c^{4^{-3}} d^{3 *-3}$

Challenge \#9

Unit 2: Exponents
Lesson 3: pages 13-16
\qquad

Warm-Up: Simplify or evaluate as far as possible. Express answers with positive exponents.

1. $7^{-3}=\frac{1}{7^{3}}=\frac{1}{343}$
2. $2^{6} \times 2^{4}=2^{6+4}=2^{10}$

$$
x^{6} \cdot x^{4}=x^{10}=1084
$$

3. $x^{9} \div x^{3}=x^{9-3}=x^{6}$
4. $7 m^{4} \times 2 m^{\prime}=14 m^{4+1}=14 m^{5}$
5. $\left(-8 x y^{5}\right)^{2}=(-8)^{2} x^{2} y^{10}$

$$
=64 x^{2} y^{10}
$$

6. $50 p^{9} \div 10 p^{-2}=5 p^{9(-(-2)}$

$$
=5 p^{11}
$$

$$
=3.1
$$

$$
=3
$$

8. $\begin{aligned}(5 m)^{-2}=\frac{1}{\left(5 m^{2}\right)^{2}} & =\frac{1}{5^{2} m^{2}} \\ & =\frac{1}{25 m^{2}}\end{aligned}$
9. $\left(2^{-3}\right)^{-2}=2^{6}=64$
10. $\left(10 y^{-3}\right)\left(6 y^{4}\right)^{2}=10 y^{-3} \cdot 6^{2} \cdot y^{8}$

$$
\begin{aligned}
& =360 y^{-3+8} \\
& =360 y^{5}
\end{aligned}
$$

11. $\left(4 x^{2} y^{3}\right)^{-3}=4^{-3} x^{-6} y^{-9}$

$$
=\frac{1}{4^{3} x^{6} y^{9}}=\frac{1}{64 x^{6} y^{9}}
$$

12. $\frac{6 m^{8} y^{2}\left(z^{-4}\right)}{12 m y^{5}\left(z^{-8}\right)}={ }^{1} 6 m^{8} y^{8} z^{8}$

$$
\begin{aligned}
c^{-4-7} & =c^{-11}=\frac{1 m^{7}(-3)^{6} z^{4}}{2}=\frac{1 m^{7} z^{4}}{2 y^{3}} \\
\text { 13. } \frac{-2 a^{-1} c^{-4}}{m^{-2} c^{7}} & =-5 a^{1}(-11
\end{aligned}
$$

13. $\frac{5^{-8 a^{-1} c^{-4}}}{\frac{a^{-2} c^{7}}{(-1 \oplus 2)}}=\frac{-5 a^{\prime}(-11}{2}=\frac{-5 a^{1}}{2 c^{11}}$
$a^{-1+2}=a^{1}$
14. $x^{-3} \cdot x^{-\frac{4}{3}} \cdot x^{\frac{1}{3}}$

$$
\begin{aligned}
& x^{-\frac{3^{3}}{1 \cdot 3}+\left(-\frac{4}{3}\right)+\frac{1}{3}} \\
= & x^{\frac{-9}{3}-\frac{4}{3}+\frac{1}{3}} \\
= & x^{\frac{-10}{3}}=x^{-4}=\frac{1}{x^{4}}
\end{aligned}
$$

Exponent Laws:
From Math 9, you should have learned how to simplify the following monomial expressions using the following exponent laws:

(More Complicated) Examples (): Evaluate or simplify the following expressions.

1. $\left.\left.6 \frac{x^{4} y^{4} m}{x^{7} y^{2} m^{5}}\right)^{\theta_{6}}=\left(\frac{x^{7} y^{2} m^{5}}{x^{4} y^{4} m^{1}}\right)^{6}=\left(x^{3} y^{-2} m^{4}\right)^{6}=x^{18}\right)^{-12} m^{24}=\frac{x^{18} m^{2 y}}{y^{12}}$
(1) Flipped Coaction
(d) Simplified brackets
(2) Distributed " 6 " exponent
2. $\frac{\left(5 m^{-1} y^{3}\right)^{2}}{m y}=\frac{5^{2} m^{-2} y^{6}}{m y}=\frac{25 m^{-2} y^{6}}{m^{\prime} y^{1}}=25 m^{-3} y^{5}=\frac{25 y^{5}}{m^{3}}$
3. $\frac{C\left(\frac{7 x^{-1} y^{6}}{x^{-4} y^{4}}\right)^{-2}=\left(\frac{x^{-4^{4}} y^{4}}{7 x^{-1} y^{6}}\right)^{2}=\frac{x^{-8} y^{8}}{7^{2} x^{-8} y^{10}}=\frac{x^{-8-(0)} y^{8-12}}{49}=\frac{1}{49}}{}=\frac{1}{49 x^{6} y^{4}}$

Pw: pgs $13-16($ including $)$
QuIz on Thursday (pgs.1-16)
After School MON room 227

Power of a Quotient:

Apply the exponent to numerator AND denominator.
Eg. $\left(\frac{2}{5}\right)^{3}=\left(\frac{2}{5}\right) \times\left(\frac{2}{5}\right) \times\left(\frac{2}{5}\right)$
$=\frac{2 \times 2 \times 2}{5 \times 5 \times 5}$
$=\frac{2^{3}}{5^{3}} \quad$ If asked to write using exponents
$=\frac{8}{125} \quad$ If asked to simplify.
$\left(\frac{2}{5}\right)^{-3}$ The negative exponent means "flip the base".

$$
\begin{aligned}
& =\frac{5 \times 5 \times 5}{2 \times 2 \times 2} \\
& =\frac{5^{3}}{2^{3}} \\
& =\frac{125}{\theta}
\end{aligned}
$$

THE RULE:

$$
\begin{aligned}
& \left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \\
& \left(\frac{a}{b}\right)^{-m}=\frac{b^{m}}{a^{m}}
\end{aligned}
$$

Simplify the following.

Simplify the following.
76. $\left(\frac{6 a b^{3}}{2 a b}\right)^{3}$
$\frac{6^{3} a^{3} b^{9}}{2^{3} a^{3} b^{3}}$
$=\frac{276 a^{3} b^{2} x^{6}}{18 Q^{3} x^{x}} \rightarrow 27 D^{6}$
78. Show why $\frac{2 a^{2}}{b^{3}}$ is the same as $2 a^{2} \times b^{-3}$.

$$
\begin{aligned}
& \frac{2 a^{2}}{b^{3}}=\frac{2 a^{2}}{1} \times \frac{1}{b^{3}} \\
& =\frac{2 a^{2}}{b^{3}}=\frac{2 a^{2}}{b^{3}}
\end{aligned}
$$

77. $\left(\frac{4 x^{-3} y^{4}}{8 x^{2} y^{-2}}\right)^{-2}$

$$
\begin{aligned}
& \left(\frac{8 x^{2} y^{-2}}{4 x^{-3} y_{0}^{4}}\right)^{2} \\
& \frac{4 x^{4}+x^{+1}}{1-x x^{2}+8}
\end{aligned}
$$

$$
\frac{4 x^{20}}{y^{22}}
$$

79. Show why $\frac{12 x^{3}}{y}$ is the same as $12 x^{3} \times y^{-1}$.

$$
\begin{aligned}
& \frac{12 x^{3}}{y}=\frac{12 x^{3}}{1} \times \frac{1}{y^{1}} \\
& \frac{22 x^{3}}{y}=\frac{12 x^{3}}{y}
\end{aligned}
$$

Challenge \#13

80. Write the following without using any negative exponents.

$$
\begin{aligned}
& 3 a^{2} b^{-5} \\
& \frac{3 a^{2}}{1} \times \frac{1}{b^{5}} \\
& =\frac{3 a^{2}}{b^{5}}
\end{aligned}
$$

81. Write the following without using any negative exponents.

$$
\frac{\frac{3}{a^{-2} b^{5}}}{\frac{3 a^{2}}{b^{5}}}
$$

Challenge \#14
82. Simplify using positive exponents.

$$
\left(\frac{2 x^{-2} y^{4}}{x^{-3} y^{3}}\right)^{-3}
$$

FMPC 10

$$
3^{2}=\frac{1}{3^{-2}} / 3^{-2}=\frac{1}{3^{2}}
$$

$$
\frac{3 x}{y z^{-2}}=\frac{3 x z^{2}}{y}
$$

Updated June 2013

Writing Expressions with Positive Exponents. (Why? Because it is standard practice.)

An expression with powers is simplified if there are no brackets and no negative exponents.

Sometimes you will use the laws above and end up with an answer with negative exponents. The quick way to convert a negative exponent into a positive exponent is to move it across the division line. The solution in question 83 shows why this works.

Simplify the following. (No brackets, no negative exponents)

Simplify the following. (No brackets, no negative exponents)

	$\begin{aligned} & \left(\frac{4}{4 \frac{4}{4} x^{6} x^{2}} \frac{27 x x^{2} x^{2}}{2}\right)^{2} \\ & \left(\frac{4 x^{6}}{3 y^{2}}\right)^{2} \\ & \frac{4 x^{6}}{3 y^{7}} \end{aligned}$

\qquad
\qquad

Warm-Up \#1: Simplify or evaluate as far as possible. Express answers with positive exponents.

1. $\frac{3 x^{2} y^{4}}{4 x^{3} y^{3}}=\frac{3 x^{2-3} y^{4-3}}{4}$

$$
\begin{aligned}
& =\frac{3 x^{-1} y^{\prime}}{y}=\frac{3 y^{\prime}}{4 x} \\
& =\frac{1 a^{1-3} b^{3-2}}{-1} \\
& =\frac{1 a^{-2} b^{\prime}}{-1}=\frac{1 b^{\prime}}{-1 a^{2}}
\end{aligned}
$$

3. $\frac{-2 x^{2} x^{-3}}{-\left(x^{-4}\right)^{-3}}=\frac{+2 x^{2} x^{4}}{+3 y^{5} y^{3}}$
$=\frac{2 x^{2+4}}{3 y^{5+3}}=\frac{2 x^{6}}{3 y^{8}}$
4. $\begin{aligned} \frac{\left(n^{2}\right)^{4}\left(-n^{6}\right)^{3}}{-n^{2}} & =\frac{n^{8}(-1)^{3}}{-n^{2}} \\ & =\frac{n^{8}(-1)}{-n^{2}}\end{aligned} \begin{aligned} & \left.\begin{array}{rl}+n^{8} \\ +n^{2} \\ & =n^{8-2} \\ & =n^{6}\end{array}\right)\end{aligned}$
5. $\frac{2 a^{2} b \sqrt{-4}}{\frac{\left(-1 a^{-3} b^{3} c^{2}\right.}{2}}=\frac{2 a^{3} b \cdot 5^{1} a^{3}}{b^{3} c^{0} c^{4}}=n^{b}$

$$
\begin{aligned}
& =\frac{10 a^{5} b}{\left(b^{3} c^{6}\right.} \\
& =\frac{10 a^{5} b^{1-3}}{c^{6}} \\
& =\frac{10 a^{5}}{b^{2} c^{6}}
\end{aligned}
$$

6. $\left(\frac{x^{2} y}{m p^{8}}\right)^{\sqrt{5}}=\frac{x^{0.5} y^{5}}{m^{5} p^{8 \cdot 5}}$

$$
=\frac{x^{10} y^{5}}{m^{5} p^{40}}
$$

7. $\left(\frac{3 c}{5 d}\right)^{-2}$
$=\left(\frac{5 d^{2}}{3 c^{2}}\right)^{2}=\frac{5 d^{2}}{3^{2} c^{2}}=\frac{25 d^{2}}{9 c^{2}}$
8. $\left(\frac{15 m^{8} y}{3 m y^{-5}}\right)^{-3}=\left(\frac{3 m y^{-5}}{15 m^{8} y}\right)^{3}$

$$
\begin{aligned}
& =\left(\frac{1 m^{-7} y^{-6}}{5}\right)^{3}=\frac{\left.15 m^{8} y^{6}\right)}{125 m^{21} y^{18}} \\
& =(9 m n)^{2}
\end{aligned}
$$

9. $\left(\frac{27 m^{2} n}{9 m}\right)^{-2}=\left(\frac{1}{\gamma} \frac{1}{\gamma} m^{2}\right)^{\partial}$

$$
=\left(\frac{1 n}{3 m}\right)^{2}=\frac{1 n^{2}}{9 m^{2}}
$$

10. $\left(\frac{2 a^{2} b^{-2}}{8 a^{-3} b}\right)^{-4}$

$$
=\left(\frac{8 a^{-3} b}{8 a^{2} b^{-2}}\right)^{4}
$$

$=\left(\frac{4 a^{-3-2} b^{1-(-2)}}{1}\right)^{4}$
$=\left(4 a^{-5} b^{1}\right)^{4}$

$$
=4^{4} a^{-20} b^{4} \frac{25 b b^{4}}{a^{10}}
$$

Warm-Up \#2: Use your calculator to complete the following tables:
1.

Write a rule to describe this relationship:

$$
x^{\frac{1}{2}}=\sqrt{X}
$$

2.

y	$y^{\left(\frac{1}{3}\right)}$
1	1
8	2
27	3
64	4
125	5
216	6

Explain what effect the exponent $\frac{1}{3}$ has on the value of y.

$$
\sqrt[3]{y}
$$

Write a rule to describe this relationship:

$$
y^{\frac{1}{3}}=\sqrt[3]{Y}
$$

3. What do you think $x^{\frac{1}{4}}$ means? Test your prediction on your calculator, letting $x=16$.

$$
\sqrt[4]{x} \quad 16^{1 / 4}=\sqrt[4]{16}=2 J
$$

4. What would $x^{\frac{1}{n}}$ mean (as a radical)?

Exponent Law:

Example \#2: Simplify the following in exponent

1. $\sqrt[2]{121}=121^{1 / 2}$
2. $\sqrt[5]{-32}=(-37)^{1 / 5}$
3. $\frac{1}{\sqrt[3]{125}}=(\sqrt[3]{125})^{-1}=125^{-1 / 3}$
4. $10 \sqrt{3 x y}$

$$
\begin{aligned}
& =\left(10 \times(3 x y)^{1 / 2}\right. \\
& \quad \text { PW: pg. 17-19 (including } 19)^{3}
\end{aligned}
$$

QUIZ THURS ps. $1-16$ (not today)
97. Challenge \#15

If $\sqrt{9} \times \sqrt{9}=9$,
and $9^{a} \times 9^{a}=9$

Then what is the value of ' a '?

$$
\frac{1}{2}
$$

98. Challenge \#16

If $\sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2}=2$,
and $2^{a} \times 2^{a} \times 2^{a}=2$

Then what is the value of ' a '? $\frac{1}{3}$ $\frac{1}{2}$

Explain:
$9 \frac{1}{2}=\sqrt[2]{9^{2}}=\sqrt[2]{9} \times \sqrt[2]{9}=3 \times 3=9$

Explain:
$2 \frac{2}{3}=\sqrt[3]{2^{2}}=\sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2}=2$
99. Write a "rule" that relates a rational (fraction) exponent to an equivalent radical expression.
A rational (fraction) exponent can be written as an equivalent radical expression by making the denominat or: the index and the numerator the exponent of the radicand. Ex. $x^{\frac{1}{2}}=\sqrt[2]{x^{1}} \Rightarrow \sqrt[2]{x}$
$\sqrt{\sqrt{2}}$ square root "2" is implied
index $\sqrt[{-\sqrt[3]{ }}]{ }$
The denominator in a rational exponent is the index.

* DENOMINATOR IS THE INDEX! *

Rational Exponents in the form: $x^{\frac{1}{n}}$	radical form
Remember, rational often refers to fractions.	$\sqrt[5]{x}=x^{\frac{1}{5} \rightarrow \text { exponential }}$ form.

What does a rational exponent mean?

Recall: $\sqrt{9} \times \sqrt{9}=9 . \quad$ If $\sqrt[3]{2} \times \sqrt[3]{2} \times \sqrt[3]{2}=2$
But $9^{\frac{1}{2}} \times 9^{\frac{1}{2}}=9$

And $3 \times 3=9$
So, $\sqrt{9}=9^{\frac{1}{2}}=3$
100. Write another statement like the one to the left.

Recall: $\sqrt{76} \times \sqrt{16}: 16| | f: \sqrt[3]{8} \times \sqrt[3]{8} \times \sqrt[3]{8}=8$
BUt: $16^{\frac{1}{2}} \times 16^{\frac{1}{2}}=16 \quad$ But: $8^{\frac{2}{3}} \times 8 \frac{1}{3} \times 8 \frac{1}{3}=8$
And: $4 \times 4=16 \quad . \quad 50: \sqrt[3]{8}=8^{\frac{1}{3}}$ SO: $\sqrt{16}=16=4$

$$
a^{\frac{1}{n}}=\sqrt[n]{a} \quad \text { and } \quad a^{-\frac{1}{n}}=\frac{1}{\sqrt[n]{a}}
$$

Evaluate or simplify the following.

Write in radical form.

Consider the following...
Step 1: $32^{\frac{3}{5}}=\left(32^{\frac{1}{5}}\right)^{3}$
Step 2: $32^{\frac{3}{5}}=(\sqrt[5]{32})^{3}$
Step 3: $32^{\frac{3}{5}}=(2)^{3}$
Step 4: $32^{\frac{3}{5}}=8$
122. Challenge \#17. Complete the following as shown above.

Step 1: $\quad 27^{\frac{2}{3}}=\left(27^{\frac{1}{3}}\right)^{2}$
Step 2: $27^{\frac{2}{3}}=(\sqrt[3]{27})^{2}$
Explain:-Make $\frac{2}{3} \rightarrow\left(\frac{1}{3}\right)^{2}=\frac{1}{3} \times \frac{2}{1}=\frac{2}{3}$

- Turn into equivalent radical

Step 3: $27^{\frac{2}{3}}=(3)^{2}$
Step 4: $27^{\frac{2}{3}}=9$

- solve radical
- solve exponent.

Lesson 5: pages 20-24
\qquad
\qquad

Warm-Up \#1: Simplify or evaluate as far as possible (\#1-6), or re-write radicals as exponents (\#7-10). Express answers with positive exponents.

1. $16^{\frac{1}{4}}=4 \sqrt{16}$

$$
=2
$$

2. $27^{-\frac{1}{3}}=\frac{1}{27^{1 / 3}}$

$$
=\frac{1}{\sqrt[3]{27}}=\frac{1}{3}
$$

3. $-25^{\frac{1}{2}}=-\sqrt[2]{25}$

$$
=-5
$$

4. $(-25)^{\frac{1}{2}}=\sqrt[3]{-25}$

No SOLuTION
5. $1024^{0.5}=1024^{1 / 2}$
$=\sqrt[3]{1024}$
$=32$
6. $\left((-2)^{-2}\right)^{\frac{1}{2}}=(-\partial)^{-1}$

$$
=\frac{1}{(-\partial)^{\prime}}=\frac{1}{-2}
$$

7. $8 \sqrt[3]{a}=8 \times a^{1 / 3}$
8. $\sqrt[2]{\left(16 y^{8}\right)}=\left(16 y^{8}\right)^{1 / 2}$

$$
\begin{aligned}
& =16^{\frac{1}{2}} y^{4} \frac{8}{1} \times \frac{1}{2} \\
& =4 y^{4}=\frac{8}{2} \\
& =50(x y) \prod_{\text {on bottom }}^{1 / 3} \text { e }
\end{aligned}
$$

9. $\frac{50}{\sqrt[6]{x y}} 3$
10. $(\sqrt[3]{\sqrt[7]{z}})^{6}$

$$
\begin{aligned}
& =\left(\sqrt[3]{z^{1 / 7}}\right)^{6} \\
& =\left(z^{\frac{1}{7} \frac{1}{3}}\right)^{6} \frac{1}{7} \times \frac{1}{3} \times \frac{6}{1} \\
& =\frac{6}{21}
\end{aligned}
$$

Warm-Up \#2:

1. Re-write the exponents below as a product of two fractions, remembering that $\frac{a}{b}=\frac{a}{1} \times \frac{1}{b}$. Then, evaluate. The first one is done as an example (3)
a. $\quad 9^{\frac{3}{2}}=\left(9^{\frac{3}{1}}\right)^{\frac{1}{2}}=(729)^{\frac{1}{2}}=\sqrt{729}=27$
b. $10\left(\frac{5}{2}\right)=\left(100^{\frac{5}{1}}\right)^{\frac{1}{2}}=(10000000000)^{1 / 2}=100000$
c. $216^{\frac{2}{3}}=\left(216^{\frac{2}{1}}\right)^{\frac{1}{3}}=(46656)^{1 / 3}=36$

This works, but there's an easier way!
Exponent Law:

Exam
ple \#2: Write the following with exponents. Then, use exponent laws and evaluate.

1. $\sqrt{88} \times 2 \times 8)=8^{2 / 8} \times 8^{3 / 2}=8^{\frac{1}{2}+\frac{3}{2}}=8^{\frac{4}{2}}=8^{2}=64$
2. $\sqrt{g^{9} \times \sqrt{g}}=g^{5 / 2} \times g^{7 / 2}=g^{12 / 2}=g^{6}$
3. $\sqrt{\sqrt{16^{3}}}=\left(16^{\frac{3}{2}}\right)^{\frac{1}{2}}=16^{\frac{3}{2} \frac{1}{2}}=16^{\frac{3}{4}} a^{\wedge}=a^{\text {min }}$

4. (151$)^{2} \cdot \sqrt[4]{188^{5}}=18^{2 / 5} \cdot 18^{3 / 5}=18^{\frac{2}{5}+\frac{3}{3}}=18^{\frac{6}{3}}=1818$
 Ch. 2 TEST THURS $26^{\text {th }}$
Example \#3: Find the area of a triangle that has a base of $82^{\frac{4}{5}} \mathrm{~cm}$ and a height of $82^{\frac{11}{5}} \mathrm{~cm}$. (Hint: $A=\frac{b \times h}{2}$)

$$
\begin{aligned}
& A=\frac{b \cdot h}{2} \\
& =\frac{82^{4 / 5} \cdot 82^{11 / 5}}{2} \\
& =8 \partial^{\frac{4}{5}+\frac{n}{3}}=275684 \mathrm{~cm}^{2}
\end{aligned}
$$

Rational Exponents in the form: $x^{\frac{m}{n}}$ where m is not 1 .

Consider the power $27^{\frac{2}{3}}$. To understand the meaning of the rational exponent we can use the exponent law:
$\left(a^{m}\right)^{n}=a^{m \times n}$.
If we take $27^{\frac{2}{3}}$ and split the exponent into two parts we get the following...
$27^{\frac{2}{3}}=\left(27^{\frac{1}{3}}\right)^{2}$

This can then be written as...
$(\sqrt[3]{27})^{2}$

The power can be evaluated from this point...
$(\sqrt[3]{27})^{2}=(3)^{2}=9$

The Rule...

$$
a^{\frac{m}{n}}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m} \quad \text { and } \quad a^{-\frac{m}{n}}=\frac{1}{\sqrt[n]{a^{m}}}=\frac{1}{(\sqrt[n]{a})^{m}}
$$

Two more examples:

Eg. 1 Evaluate $8^{\frac{2}{3}}$ without using a calculator.
$8^{\frac{2}{3}}=\left(8^{\frac{1}{3}}\right)^{2}=(\sqrt[3]{8})^{2}=(2)^{2}=4$
Means square of the cube root of 8 .

Eg. 2 Evaluate $9^{-\frac{3}{2}}$ without using a calculator.
$9^{-\frac{3}{2}}=\left(\frac{1}{9}\right)^{\frac{3}{2}}=\frac{\left(1^{\frac{1}{2}}\right)^{3}}{\left(9^{\frac{1}{2}}\right)^{3}}=\frac{1}{(\sqrt{9})^{3}}=\frac{1}{(3)^{3}}=\frac{1}{27}$
Means "the reciprocal" of the cube of the square root of 9 .

Write each of the following using radicals. (Do not evaluate)

Evaluate each of the following.

129. $4^{\frac{1}{2}}$ $4 \frac{3}{2}=\sqrt{4}=2$	$\begin{aligned} & 130.125^{\frac{1}{3}} \\ & \left.125 \frac{1}{3}: \sqrt[3]{125}: 5\right] \end{aligned}$	$\begin{aligned} & \text { 131. } 8^{\frac{2}{3}} \\ & \left(8 \frac{1}{3}\right)^{2} \\ & (\sqrt[3]{8})^{2}=(2)^{2}=4 \end{aligned}$
$\begin{aligned} & 132.81^{\frac{3}{4}} \\ & \left(81^{\frac{3}{4}}\right)^{3} \\ & (\sqrt[4]{81})^{3} \\ & (3)^{3}=27 \end{aligned}$	133. $4 \frac{3}{2}$ $\begin{aligned} & \left(4 \frac{2}{2}\right)^{3} \\ & (\sqrt[2]{4})^{3}:(2)^{3}: 8 \end{aligned}$	$\begin{aligned} & \text { 134. } 16^{-\frac{3}{4}} \\ & \frac{1}{\left(16 \frac{1}{4}\right)^{3}}=\frac{1}{(\sqrt[4]{16})^{3}}=\frac{1}{(2)^{3}} \\ & =\frac{1}{8} \end{aligned}$
$\begin{aligned} & \text { 135. }(-27)^{-\frac{2}{3}} \\ & \frac{1}{\left((-27)^{\frac{1}{3}}\right)^{2}} \\ & \frac{1}{(\sqrt[3]{-27})^{2}}: \frac{1}{(-3)^{2}}=\frac{1}{9} \end{aligned}$	$\begin{aligned} & \text { 136. }(-8)^{-\frac{5}{3}} \\ & \frac{1}{\left((-8)^{\frac{1}{3}}\right)^{5}}=(\sqrt[3]{\sqrt[3]{-8}})^{5}=\frac{1}{(-2)^{5}} \\ & \frac{1}{-32} \end{aligned}$	$137.9^{2.5}$ $\begin{aligned} & 9 \frac{5}{2}=\left(9 \frac{1}{2}\right)^{5}:(\sqrt[2]{9})^{5} \\ & =(3)^{5}: 243 \quad\left(\sqrt[3]{\frac{8}{27}}\right)^{2}:\left(\frac{2}{3}\right)^{2} \end{aligned}$
$\text { 138. } \begin{aligned} &(-1)^{\frac{-}{5}} \\ &= \frac{1}{\left((-1)^{\frac{2}{5}}\right)^{8}} \\ &=\frac{1}{(\sqrt[5]{-1})^{8}}: \frac{1}{(-1)^{8}} \\ & \frac{1}{1}=1 \end{aligned}$	139. $\begin{aligned} & \left(\frac{(100}{9}\right)^{\frac{3}{2}} \\ & \left(100^{\frac{1}{2}}\right)^{3} \quad \sqrt[2]{100^{3}} \\ & (\sqrt[2]{100})^{3} \\ & (10)^{3}=1000 \\ & \left(9^{\frac{1}{2}}\right)^{3} \\ & (\sqrt[2]{9})^{3} \end{aligned}$	
Page 21 \|Exponents	Copyright Mathbeacon.com. Use $\begin{aligned} & (3)^{3} \\ & 27 \end{aligned} \frac{1000}{27}$	rmission. Do not use after June 2015 $\begin{aligned} & \text { on. Do not use after June } 2015 \\ & \left(\frac{1}{\sqrt[3]{27})^{2}}: \frac{1}{3^{2}}: \frac{1}{9}=\frac{1}{9} \div \frac{1}{4}: \frac{1}{9} \times \frac{4}{1}=\frac{4}{9}\right. \\ & \left(\frac{1}{9}\right)^{2} \end{aligned} \frac{1}{2^{2}}: \frac{1}{4}=1 .$

Eg. $\sqrt{12}=12^{\frac{1}{2}}$
Eg. $(\sqrt[3]{7})^{4}=7^{\frac{4}{3}}$
Eg. $\frac{1}{(\sqrt[3]{7})^{2}}=7^{-\frac{2}{3}}$

Evaluate if possible.

$\begin{aligned} & \text { 153. }(-9)^{\frac{1}{2}} \\ & \sqrt[2]{-9}=3 i \\ & \text { no solution } \end{aligned}$	$\begin{aligned} & 154.100000^{\frac{3}{5}} \\ & (\sqrt[5]{100000})^{3} \\ & =(10)^{3} 1000 \end{aligned}$	$\begin{aligned} & \text { 155. }\left(\frac{27}{8}\right)^{\frac{2}{3}} \\ & 27^{\frac{2}{3}}:(\sqrt[3]{27})^{2}:(3)^{2}: 9 \\ & 8^{\frac{2}{3}}=(\sqrt[3]{8})^{2}:(2)^{2}=4 \end{aligned}$
156. $3^{\frac{1}{2}} \times 3^{\frac{1}{2}}$ $\begin{aligned} & \sqrt[2]{3} \times \sqrt[2]{3}: \sqrt{3} \times \sqrt{3} \\ & =\sqrt{9}: 3 \end{aligned}$	157. $-9^{\frac{1}{2}}$ $\begin{aligned} & -1 \times \sqrt[2]{9}:-1 \times 3 \\ & :-3 \end{aligned}$	$\begin{aligned} & \text { 158. }\left(2^{5}\right)^{0.4} \\ & \left(2^{5}\right)^{\frac{4}{10}}=\left(2^{5}\right)^{\frac{2}{5}} \\ & (\sqrt[5]{32})^{2}=(2)^{2}=4 \end{aligned}$

Evaluate if possible.

168. Challenge

Write the following radicals as a single power.
$\left(\sqrt[2]{x^{3}}\right)(\sqrt[3]{x})$
$\left(x^{\frac{3}{2}}\right)\left(x^{\frac{7}{3}}\right)$
$\left(x^{\frac{9}{6}}\right)\left(x^{\frac{2}{6}}\right)$

Write each of the following radicals as a single power.

$169 .\left(\sqrt{x^{3}}\right)(\sqrt[3]{x})$	170. $\left(\sqrt[3]{x^{2}}\right)\left(\sqrt[4]{x^{3}}\right)$	$171 .\left(\sqrt[5]{x^{3}}\right)\left(\sqrt[3]{x^{2}}\right)$
$\left(x^{\frac{3}{2}}\right)\left(x^{\frac{1}{3}}\right)$ Write as powers (both base-x).	$x^{\frac{2}{3}} \times x^{\frac{3}{4}}$	$=x^{\frac{3}{5}} \times x^{\frac{2}{3}}$
$\left(x^{\frac{9}{6}}\right)\left(x^{\frac{2}{6}}\right)$ Create common denominators.	$=x^{\frac{8}{22} \times x^{\frac{9}{22}}}$	$=x^{\frac{9}{35} \times x^{\frac{10}{15}}}$
$\left(x^{\frac{9+2}{6}}\right)$ Add numerators.	$x^{\frac{17}{12}}$	
$\left.x^{\frac{11}{6}}\right)$		

More rational exponents...

172. The height and the base of a triangle each measure $2^{\frac{3}{2}} \mathrm{~cm}$. Without using a calculator, what is the area of the triangle?
triangle?
$2 \frac{2 \frac{3}{2} \times 2 \frac{3}{2}}{2}=\frac{2 \frac{6}{2}}{2}=\frac{2^{3}}{2}$
$=4 \mathrm{~cm}^{2}$
173. Find the area of a rectangle if the length is $5^{\frac{2}{3}}$ and the width is $5^{\frac{2}{5}}$. Write your answer in exponential form, then approximate to two decimal places.

174. Inscribe a square inside another square such that the corners of the internal square contact the midpoint of sides of the larger square. If the side length of the larger square is $\sqrt{7}$, what is the area of the inscribed square? Answer in exact form.
$\sqrt{7} \longrightarrow \frac{\sqrt{7}-\frac{\sqrt{7}}{2}}{3}$
$=\left(\frac{\sqrt{7}}{2}\right)^{2}+\left(\frac{\sqrt{7}}{2}\right)^{2}=$
$1.75+1.75: \sqrt{3.5}=1.870828693^{2}=3.5$ units 2
$\sqrt{7}$
(175.) Simplify(write as a single power.)

Page 24 |Exponents
177. Ei-Q evaluated $64^{\frac{3}{2}}$ using the following steps. In which step did she make her first error?

Step 1: $\quad 64^{\frac{3}{2}}=(\sqrt{64})^{3}$
Step 2: $\quad 64^{\frac{3}{2}}=(8)^{3}$
Step 3: $\quad 64^{\frac{3}{2}}=24=512$
a) In step 1 .
b) In step 2.
(c) In step 3.
d) She made no error.
178. Flinflan started to evaluate $81^{-\frac{3}{4}}$ in two different ways shown below. Which of the following statements is correct?
Method 1:
$81^{-\frac{3}{4}}=(\sqrt[4]{81})^{-3}$
Method 2:
$81^{-\frac{3}{4}}=\frac{1}{\sqrt[4]{81^{3}}}$
a) Method 1 will produce the correct answer but method 2 will not.
b) Method 2 will produce the correct answer but method 1 will not.
c) Both methods will produce the correct answer.
d) Neither method will produce the correct answer.

Match each item in column 1 with an equivalent item in column 2

Column 1	Column 2
183. $\left(\frac{t}{j}\right)^{\frac{2}{3}}=F$	A. $\sqrt[3]{\frac{j^{2}}{t^{2}}}$
184. $\left(\frac{j}{t}\right)^{\frac{3}{2}}=C$	$\text { B. }-\left(\frac{j}{t}\right)^{\frac{3}{2}}$
$(185)\left(\frac{t}{j}\right)^{-\frac{2}{3}} \sqrt[3]{\frac{j^{2}}{t^{2}}}=A$	$\dot{q} \sqrt{\frac{j^{3}}{t^{3}}}$
186. $\left(\frac{j}{t}\right)^{-\frac{3}{2}}$	$\text { D. }-\left(\frac{t}{j}\right)^{\frac{2}{3}}$
187. $\left(\frac{t}{j}\right)^{-\frac{3}{2}}$	E. $\sqrt{\frac{t^{3}}{j^{3}}}$
	$\bar{\lambda} \sqrt[3]{\frac{t^{2}}{j^{2}}}$ G. $-\left(\frac{t}{\jmath}\right)^{\frac{3}{2}}$
1	
188. Which of the following is equivalent to $3 a^{\frac{1}{2}} \times(5 a)^{\frac{1}{2}}$	189. Which of the following is equivalent to $2 x^{\frac{1}{2}} \times(3 x)^{\frac{1}{2}}$
$15 a^{\frac{2}{2}}=15 a$ a. $15 a$ b. $a \sqrt{15}$ c. $3 \sqrt{5 a}$ $3 \sqrt{\frac{1}{a}} \times 1 \sqrt{5 a}$	a. $6 x$ b. $x \sqrt{6}$ $2 \times x^{\frac{2}{2}} \times 3^{\frac{2}{2}} \times x^{\frac{2}{2}}$ c. $2 \sqrt{3 x}$ d. $2 x \sqrt{3}$ $=2 \times x^{\frac{2}{2}} \times x^{\frac{2}{2}} \times 3 \frac{2}{2}$
$3 \times a^{\frac{1}{2}} \times 5^{\frac{1}{2}} \times a^{\frac{1}{2}}$	$=2 \times x^{\frac{2}{2}} \times 3^{\frac{2}{2}}$
$=3 \times a^{\frac{3}{2}} \times a^{\frac{2}{2}} \times 5^{\frac{3}{2}}$	
$=\quad 3 \times a^{\frac{2}{2}} \times 5^{\frac{1}{2}}$	$=2 x \sqrt{3}$
$=3 \times a \times 5 \frac{1}{2}$	
$=3 a \sqrt{5}$	

$\frac{3^{0}+2^{-1}}{3^{2}+2^{2}}$

$$
=\frac{1+\frac{1}{2}}{9+4}=\frac{1^{\frac{2}{2}}}{13}
$$

$=\sqrt[2]{2}$
Page 27 |Exponents
193. Evaluate. Answer in simplest fraction form.

$$
\begin{aligned}
& \frac{3^{-2}+3^{2}}{3^{-2}+2^{0}} \\
& \frac{3^{2} \times 3^{2}}{2^{0} \times 3^{2}} \\
& =\frac{3^{4}}{1 \times 9}=\frac{81}{9}=\frac{9}{1}
\end{aligned}
$$

$$
\frac{3^{-2}+3^{2}}{3^{-2}+2^{0}}=\frac{\frac{1}{3^{2}}+9}{\frac{1}{3^{2}}+1}
$$

$$
=\frac{\frac{1}{9}+9}{\frac{1}{9}+1}=\frac{9^{\frac{1}{9}}}{1^{\frac{1}{9}}}=\frac{\frac{82}{9}}{\frac{10}{9}}
$$

$$
\begin{aligned}
& =\frac{\frac{82}{9} \div \frac{70}{9}=\frac{82}{4} \times \frac{91}{10}}{}=\frac{82}{10}=\frac{41}{5}
\end{aligned}
$$

$$
\frac{3^{0}+2^{-2}}{3^{2}+22}=\frac{1+\frac{1}{2}}{9+4}=\frac{1 \frac{1}{2}}{13}=\frac{\frac{3}{2}}{13}=\frac{3}{2} \div \frac{13}{1}=\frac{3}{2} \times \frac{1}{13}=\frac{3}{26}
$$

```
Answers:
1. 81
2
x 
2x
9\times9=81 or
3\times3\times3\times3=81 or 3 }\mp@subsup{}{}{4}=8
6. Answers vary. Similar to
above.
7. 16,8,4,2,1, , , , , , 
8. Divide by 2 as you go down
the list
9. Fits the pattern above.
10. Yes follows the division
pattern.
11. Decreasing exponent value is like dividing by two in this case.
12. 4
13. \(2^{5}\)
14. 2
15. \(-4^{2}\)
16. \(-9^{2}\)
17. \(\frac{2 x^{3}}{2 x^{3}},(5 x)^{0}\)
18. \((-3)^{2}\)
19. -64
20. -27
21. -16
22. \(\frac{1}{16}\)
23. \(-\frac{1}{16}\)
24. \(\frac{1}{81}\)
25. \(\frac{1}{81}\)
26. \(-\frac{1}{81}\)
27. 16
28. 16
29. -16
30. 1
31. \(\mathbf{- 1}\)
32. 1
33. \(a^{9}\)
34. \(g^{4}\)
35. \(15 m^{6}\)
36. \(a^{9}\)
37. \(a^{-2}\)
38. \(f^{2+x}\)
39. \(x^{1}\)
40. \(2^{-2}\)
41. \(g\)
42. \(m^{4}\)
43. \(t^{5}\)
44. \(x^{10}\)
45. \(15 m^{6}\)
46. \(5 x^{6}\)
47. \(-\frac{1}{2} a^{2}=-\frac{a^{2}}{2}\)
48. \(\frac{4 x^{\frac{2}{2}}}{5}\)
49.
50. \(\frac{2}{3}\)
51. 15625
52. \(m^{6}\)
53. \(8 m^{12}\)
54. \(m^{6}\)
55. 1
```

56. $x^{-6} y^{-9}=\frac{1}{x^{6} y^{9}}$
57. $8 m^{12}$
58. $\quad 2^{-3} c^{-12} d^{-9}=\frac{1}{B c^{12} d^{7}}$
59. $(-3)^{-4} x^{8} y^{-12}=\frac{x^{11}}{\text { B1 } y^{12}}$
60. $3^{-3} x^{6} y^{9}=\frac{1}{27} x^{6} y^{9}$ or $\frac{x^{6} y^{9}}{27}$
61. $-18 x^{5} y^{9}$
62. $128 a^{12} b^{2}$
63. $\frac{8}{125}$
64. $\frac{125}{8}$
65. $\frac{x^{3}}{8}$
66. $\frac{16 y^{2}}{9 x^{10}}$
67. $\frac{x^{3}}{8}$
68. $\frac{a^{4}}{b^{4}}$
69. $\frac{x^{10}}{y^{15}}$
70. $\frac{-8 a^{6}}{27 y^{9}}$
71. $\frac{a^{6}}{b^{4}}$
72. $\frac{16 x^{2}}{9 y^{2}}$
73. $\frac{16 y^{2}}{9 x^{10}}$
74. $\frac{25 a^{6} b^{4} c^{12}}{4}$
75. $\frac{n^{3}}{9 m^{3}}$
76. $27 b^{6}$
77. $\frac{4 x^{10}}{y^{12}}$
78. $\frac{2 a^{2}}{b^{3}}=\frac{2 a^{2}}{1} \times \frac{1}{b^{3}}$ and $\frac{1}{b^{3}}=b^{-3}$
79. $\frac{12 x^{3}}{y}=\frac{12 x^{3}}{1} \times \frac{1}{y}$ and $\frac{1}{y}=y^{-1}$
80. $\frac{3 a^{2}}{b^{5}}$
81. $\frac{3 a^{2}}{b}$
82. $\frac{1}{B x^{3} y^{3}}$
83. $\frac{3 a^{2}}{b^{5}}$
84. $\frac{a^{2}}{b^{3}}$
85. $2 x^{5} y^{5}$
86. $\frac{3 a^{2}}{b^{3} c^{5}}$
87. $\frac{y^{6} z^{2}}{x^{8}}$
88. $\frac{9}{2 x^{7} y^{11}}$
89. $\frac{1}{8 x^{3} y^{3}}$
90. $\frac{4}{a^{15} b^{9}}$
91. $\frac{2}{m^{2} n}$
92. Remember that a negative exponent can be evaluated by reciprocating the base, therefore expressions like
a^{-3} become $\frac{1}{a^{3}}$. Notice the exponent became positive
93. $\frac{4 y^{12}}{9 y^{8}}$
94.
95.
96.
97.
98. $\frac{1}{3}$
99. $x^{\frac{1}{n}}=\sqrt[n]{x}$
100. Possible answer:
$\sqrt[4]{3} \times \sqrt[4]{3} \times \sqrt[4]{3} \times \sqrt[4]{3}=3$
$3^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times 3^{\frac{1}{4}} \times 3^{\frac{1}{4}}=3$
$\therefore \sqrt[4]{3}=3^{\frac{1}{4}}$
101. 7
102. -4
103. no real number
104. 4
105. $\frac{1}{3}$
106. $\frac{1}{2}$
107. 10
108. $2 x$
109. $\frac{1}{3 x^{2}}$
110. $\sqrt{7}$
111. $\sqrt[3]{3 x}$
112. $\sqrt[5]{4}$
113. $\frac{1}{\sqrt[5]{4}}$
114. $-\sqrt[3]{64}$
115. $\frac{1}{\sqrt[3]{64}}$
116. $13^{\frac{1}{2}}$
117. $-3 x^{\frac{1}{2}}$
118. $(2 y)^{\frac{1}{2}}$
119. $4^{\frac{1}{4}}$
120. $4^{\frac{1}{7}}$
121. $(3 x)^{-\frac{1}{5}}$
122. $27^{\frac{2}{3}}=\left(27^{\frac{1}{3}}\right)^{2}$

$$
27^{\frac{2}{3}}=(\sqrt[3]{27})^{2}
$$

$$
27^{\frac{2}{3}}=(3)^{2}
$$

$$
27^{\frac{2}{3}}=9
$$

123. $\sqrt[5]{4^{2}}$ or $(\sqrt[5]{4})^{2}$
124. $\sqrt[5]{4^{3}}$ or $(\sqrt[5]{4})^{3}$
125. $\sqrt[5]{4^{4}}$ or $(\sqrt[5]{4})^{4}$
126. $\frac{1}{\sqrt[5]{4^{2}}}$ or $\frac{1}{(\sqrt[5]{4})^{2}}$
127. $\frac{1}{\sqrt[5]{4^{3}}}$ or $\frac{1}{(\sqrt[5]{4})^{3}}$
128. $\frac{1}{\sqrt[5]{4^{4}}}$ or $\frac{1}{(\sqrt[5]{4})^{4}}$
129. $\sqrt{4}=2$
130. $\sqrt[3]{125}=5$
131. $(\sqrt[3]{8})^{2}=4$
132. $(\sqrt[4]{81})^{3}=27$
133. $(\sqrt{4})^{3}=8$
134. $\frac{1}{(\sqrt[4]{16})^{3}}=\frac{1}{8}$
135. $\frac{1}{(\sqrt[3]{-27})^{2}}=\frac{1}{9}$
136. $\frac{1}{(\sqrt[3]{-8})^{5}}=-\frac{1}{32}$
137. $9^{\frac{5}{2}}=(\sqrt{9})^{5}=243$
```
138. 1
139. \(\frac{1000}{27}\)
140. \(\frac{4}{9}\)
141. \(7^{\frac{1}{2}}\)
142. \(34^{\frac{1}{3}}\)
143. \((-11)^{\frac{1}{3}}\)
144. \(a^{\frac{2}{5}}\)
145. \(6^{\frac{4}{3}}\)
146. \(x^{\frac{2}{3}}\)
147. \(6^{\frac{3}{5}}\)
148. \((2 x)^{\frac{5}{4}}\)
149. \(a^{-\frac{1}{3}}\)
150. \(x^{-\frac{4}{5}}\)
151. \(x^{-\frac{3}{4}}\)
152. \(2^{\frac{1}{3}} b\)
153. no real solution
154. 1000
155. \(\frac{9}{4}\)
156. 3
157. -3
158. 4
159. a)-16 b) 16
160. 4
161. no real solution
162. 5
163. 4
164. 3
165. 0.32
166. 1.98
167. 0.55
168. \(x^{\frac{11}{6}}\)
169. Answered on page.
170. \(x^{\frac{17}{12}}\)
171. \(x^{\frac{19}{15}}\)
172. \(4 \mathrm{~cm}^{2}\)
173. \(5^{\frac{16}{15}} \mathrm{~cm}^{2} \cong 5.57 \mathrm{~cm}^{2}\)
174. \(\frac{7}{2}\) or \(3.5 \mathrm{~cm}^{2}\)
175. \(x^{-\frac{46}{15}}\) or \(\frac{1}{x^{\frac{46}{15}}}\)
176. \(x^{\frac{17}{6}}\)
177. \(c\)
178. \(\epsilon\)
179. \(x^{\frac{26}{15}}=\frac{1}{x^{\frac{26}{15}}}\)
180. \(a^{\frac{29}{6}}=\frac{1}{a^{\frac{29}{6}}}\)
181. \(a^{\frac{1}{18}}\)
182. \(x^{\frac{1}{60}}\)
183. F
184. C
185. A
186. E
187. C
188. D
189. D
190. C,D
191. B
192. \(\frac{3}{26}\)
193. \(\frac{41}{5}\)
```

