Chemistry 11

Review Package \#2

Measurement and Communication The Mole
Chemical Reactions and Equations Stoichiometry

1. Measurement and Communication:

A. Scientific Notation:

- Conversion of numbers from decimal into scientific notation and vice versa
B. Uncertainty in Measurement
- Difference between accuracy and precision
- Significant figures (multiplication, division, adding and subtracting)

C. Unit Conversions

- metric SI prefixes (milli, centi, micro, etc.)
- converting between units (ie. millimitres to micrometres, etc.)

2. The Mole:

A. Molar Mass (text pgs. 311-322)
B. Mole Conversions (text pgs. 323-331)

- Converting between moles and atoms/molecules
(Avogadro's number; 1 mole $=6.022 \times 10^{23}$ atoms $/ \mathrm{molecules} /$ particles)
- Converting between moles and mass (grams)
- Multi-step conversions (ie. grams to moles to molecules)
- Conversions using molar volume (litres per mole) of a gas
(at STP 1 mole $=22.4 \mathrm{~L}$)
C. Percentage Composition, Empirical and Molecular Formulae (text pgs. 332339)
D. Molarity (Molar concentration $=\mathbf{M}$)
- Calculating molarity ($\mathrm{mol} / \mathrm{L}$) using unit conversions
- Dilutions $\left(\mathrm{m}_{1} \mathrm{~V}_{1}=\mathrm{m}_{2} \mathrm{~V}_{2}\right)$

3. Chemical Reactions and Equations:

A. Balancing Equations (text pgs. 282-289)
B. Classifying Reaction Types (text pgs. 291-296)

- synthesis, decomposition, single replacement, double replacement, neutralization, combustion
- predicting products of reactions
C. Energy of Reactions
- exothermic and endothermic reactions

4. Stoichiometry:

A. Stoichiometry (text pgs. 347-364

- performing mole calculations based on coefficient ratios in a balanced chemical equation (using the flowchart notes)
B. Excess and Limiting Reagents (text pgs. 365-373)
- identifying limiting and excess reagents in a chemical reaction
- calculating the amount of excess reactant
- calculating the amount of product formed in a reaction using the limiting reactant
C. Percent Yield (text pgs. 365-373)
- calculating the efficiency of a chemical reaction from percent yield

Measurement and Communication:

1. Complete the following table of prefixes.

Factor	Prefix	Abbreviation
10^{6}	kilo	
		h
	deci	
10^{1}		c
	micro	
10^{-3}		n
10^{-12}		

2. A student weighed a mass 4 times and obtained the following masses:

$$
25.5 \mathrm{~g}, 29.6 \mathrm{~g}, 23.6 \mathrm{~g}, 27.3 \mathrm{~g}
$$

The actual value is known to be 10.20045 g
What can be said about the accuracy and precision of the measurements?
3. Write the following numbers in scientific notation with the same number of significant digits.
a) 0.000005187
b) 7,247
c) 16,140
d) 0.0921
4. Convert the following numbers from scientific notation into decimal form.
a) 4.562×10^{6}
b) 8.276×10^{-8}
5. Complete the following calculations. Include all units and don't forget about sig figs.
a) $1.0068 \mathrm{~g}+2.15 \mathrm{~g}+8.3 \mathrm{~g}=$
b) $21.05 \mathrm{~cm}-12.1 \mathrm{~cm}=$
c) $\underline{1.50 \times 10^{-2} \mathrm{~mol}=}$ 40.0 mL
d) $432.8 \mathrm{~g}=$ $21.8 \mathrm{~cm} \times(7.645 \mathrm{~cm}-3.58 \mathrm{~cm})$
6. Convert 12 milliamperes into megaamperes.
7. Convert $42.6 \mu \mathrm{~mol} / \mathrm{mL}$ into $\mathrm{mol} / \mathrm{L}$.
8. Determine how many significant figures are in each of the following numbers:
a) 1.00300
b) 780.00
c) 0.1110
d) 3000
e) 0.003050
f) $7,000,800$
g) 0.00567
h) 3.000

Mole Conversions:

1. Calculate the MOLAR MASS of the following substances.
a) CuSO_{4}
b) $\mathrm{Ca}\left(\mathrm{MnO}_{4}\right)_{2}$
2. Calculate the number of moles of CO_{2} that would be present in 8.7×10^{18} molecules of CO_{2}.
3. How many grams of Copper would be present in 4.5×10^{-3} moles of Copper?
4. Calculate the mass (in g) of 2.7×10^{21} molecules of ammonia $\left(\mathrm{NH}_{3}\right)$.
5. Determine the mass (in grams) of one atom of Silver.
6. How many molecules are in 75.6 g of $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3}$?
7. What is the volume occupied by 15 mg of $\mathrm{SbH}_{3(\mathrm{~g})}$ at STP ?

Percentage Composition, Empirical and Molecular Formulae:

1. Write the empirical formula for each of the following compounds.
a) $\mathrm{P}_{4} \mathrm{O}_{10}$
c) $\mathrm{Pb}_{2}\left(\mathrm{CO}_{3}\right)_{4}$ \qquad
b) $\mathrm{Mg}_{2} \mathrm{Cl}_{4}$
d) $\mathrm{N}_{2} \mathrm{O}_{2}$
2. Calculate the percentage composition by mass of each of the following compounds.
a) CO_{2}
b) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
3. Calculate the percentage composition of the bold species in each of the following compounds.
a) $\mathrm{Cu}\left(\mathbf{N O}_{3}\right)_{2}$
b) $\mathrm{NaSCN} \cdot 5 \mathbf{H}_{2} \mathrm{O}$
4. a) A compound has the following composition: $24.24 \% \mathrm{C}, 4.04 \% \mathrm{H}$ and $71.72 \% \mathrm{Cl}$. What is the empirical formula of the compound?
b) If the molecular mass of this compound is $99.5 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula?
5. The molar mass of a compound is $58 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of the compound if the empirical formula is $\mathrm{C}_{2} \mathrm{H}_{5}$?

Molarity Calculations:

1. If a 4.50 g sample of solid NaOH is dissolved to make 0.500 L of solution, what is the molarity of the solution?
2. How many grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ would be required to produce 400.0 mL of $0.600 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$?
3. If 75.7 g of Magnesium chloride are mixed with sufficient water to make a 0.885 M solution, what is the volume of the solution?
4. How many mL of $16.4 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are needed to prepare 755 mL of $0.25 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?

Chemical Reactions and Equations:

1. Balance and classify the following chemical reactions.

Type of Reaction
a) $__{工} \mathrm{KNO}_{3} \rightarrow \ldots \mathrm{KNO}_{2}+\ldots \mathrm{O}_{2}$
b) $\ldots_{2} \mathrm{CaC}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{Ca}+\ldots \mathrm{CO}_{2}$
c) ___ $\mathrm{C}_{5} \mathrm{H}_{12}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$

e) $__\mathrm{KOH}+\ldots \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \ldots \mathrm{~K}_{2} \mathrm{SO}_{4}+{ }_{-} \mathrm{H}_{2} \mathrm{O}$
f) __ $\mathrm{Ca}(\mathrm{OH})_{2}+__{工} \mathrm{NH}_{4} \mathrm{Cl} \rightarrow \ldots \mathrm{NH}_{4} \mathrm{OH}+{ }_{\sim} \mathrm{CaCl}_{2}$
g）$__{工} \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{SO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
h）$__{工} \mathrm{C}_{15} \mathrm{H}_{30}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$
i）$\ldots_{[} \mathrm{BN}+\ldots \mathrm{F}_{2} \rightarrow$＿ $\mathrm{BF}_{3}+\ldots \mathrm{N}_{2}$
j）＿＿＿ $\mathrm{Na}+\ldots \mathrm{ZnI}_{2} \rightarrow \ldots \quad \mathrm{NaI}+{ }_{C} \mathrm{Zn}$
2．Classify，complete AND balance the following chemical equations．Type of Reaction
a）$\ldots_{-} \mathrm{Ni}_{(\mathrm{s})}+\ldots \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\text {（aq）}} \rightarrow$
b）$\ldots_{-} \mathrm{Fe}_{(\mathrm{s})}+\ldots \mathrm{O}_{2(\mathrm{~g})} \rightarrow$
c）$\ldots \mathrm{NaCl}_{(\mathrm{s})} \rightarrow$
d）＿＿ $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\ldots \mathrm{NaOH}_{(\text {aq）}} \rightarrow$
e）$__{[} \mathrm{C}_{4} \mathrm{H}_{10(1)}+\ldots \mathrm{O}_{2(\mathrm{~g})} \rightarrow$
f）$\ldots \mathrm{Cg}_{(\mathrm{s})}+\ldots \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow$
g）$__{C} \mathrm{Cl}_{2(\mathrm{~g})}+\ldots \mathrm{KI}_{(\mathrm{s})} \rightarrow$
h）＿＿＿ $\mathrm{Fe}_{(\mathrm{s})}+\ldots \mathrm{AgCl}_{(\mathrm{aq})} \rightarrow$
i）$\ldots_{ـ} \mathrm{AgNO}_{3(\mathrm{aq})}+\ldots \mathrm{BaCl}_{2(\mathrm{qq)}} \rightarrow$
j）＿＿ $\mathrm{BaCO}_{3(\mathrm{aq})}+{ }_{C} \mathrm{Sr}(\mathrm{OH})_{2(\text { aq })} \rightarrow$
k）$__{-} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(\mathrm{l})}+\ldots \mathrm{O}_{2(\mathrm{~g})} \rightarrow$
1）$__{工} \mathrm{HNO}_{3(\mathrm{aq})}+\ldots \mathrm{KOH}_{(\mathrm{qq})} \rightarrow$

Energy of Reactions：

1. Define ENDOTHERMIC and EXOTHERMIC reactions.

Endothermic: \qquad
\qquad
-

Exothermic: \qquad
\qquad
-
2. Classify the following reactions as either endothermic or exothermic.
a) $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+$ energy
b) $\mathrm{N}_{2} \mathrm{O}_{4}+$ energy $\rightarrow \mathrm{N}_{2}+2 \mathrm{O}_{2}$
c) $\mathrm{AB}+\mathrm{C} \rightarrow \mathrm{CB}+\mathrm{A}+56.9 \mathrm{~kJ}$
d) $\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{BC} \quad \Delta \mathrm{H}=-256.4 \mathrm{~kJ}$

Stoichiometry:

1. Ammonia combines with oxygen gas in the following reaction:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO}
$$

a) How many moles of NH_{3} are needed to combine with 3.57 moles of O_{2} gas?
b) If 1.5 grams of NO is produced in the above reaction, how many grams of NH_{3} were reacted?
2. $\quad 3 \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{FeCl}_{3} \rightarrow 6 \mathrm{NaCl}+\mathrm{Fe}_{2}(\mathrm{CO})_{3}$
a) How many grams of NaCl will be produced from the reaction of 0.080 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with excess FeCl_{3} ?
b) How many grams of FeCl_{3} would be needed to react with 4.2 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$?
3. $3 \mathrm{Mg}+2 \mathrm{AlCl}_{3} \rightarrow 3 \mathrm{MgCl}_{2}+2 \mathrm{Al}$
a) How many grams of MgCl_{2} would be formed if 50.0 mL of $0.200 \mathrm{M} \mathrm{AlCl}_{3}$ is reacted with excess Mg ?
b) How many mL of $0.150 \mathrm{M} \mathrm{AlCl}_{3}$ would be needed to react completely with 2.00 g of Mg ?

Excess and Limiting Reagents/Percent Yield:

1.

$$
2 \mathrm{Fe}_{2} \mathrm{~S}_{3}+9 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{SO}_{2}
$$

In a chemical reaction 6.92 g of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ is combined with 4.54 g of oxygen gas.
a) Which reactant is the LIMITING reagent?
b) How many grams of the EXCESS reactant will be left over after the reaction is complete?
c) How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ can be formed in this reaction?
2. What mass of P_{4} will be produced when 41.5 g of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}, 26.3 \mathrm{~g}$ of SiO_{2}, and 7.80 g of C are reacted according to the following balanced equation?

$$
2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{SiO}_{2}+10 \mathrm{C} \rightarrow \mathrm{P}_{4}+6 \mathrm{CaSiO}_{3}+10 \mathrm{CO}
$$

3.

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

a) How many grams of aluminum oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$, would be expected to form in the reaction of 15.0 g Al with 18.43 g of oxygen gas?
b) If the actual yield of $\mathrm{Al}_{2} \mathrm{O}_{3}$ produced in the reaction was only $22.4 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$, what would the PERCENT YIELD of the reaction be?

