Measurement and Communication:

1. Complete the following table of prefixes.

Factor	Prefix	Abbreviation
10^{6}	mega	M
10^{3}	kilo	K
10^{2}	hecto	h
10^{1}	deka	da
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

2. A student weighed a mass 4 times and obtained the following masses:
$25.5 \mathrm{~g}, 29.6 \mathrm{~g}, 23.6 \mathrm{~g}, 27.3 \mathrm{~g}$
The actual value is known to be 10.20045 g
What can be said about the accuracy and precision of the measurements?

- not accurate (correct) or precise (reproducable)

3. Write the following numbers in scientific notation with the same number of significant digits.
a) 0.000005187

4. Convert the following numbers from scientific notation into decimal form.
a) 4.562×10^{6}
$\frac{4,562,000}{0.0000008276}$
5. Complete the following calculations. Include all units and don't forget about sig figs.
a) $1.0068 \mathrm{~g}+2.15 \mathrm{~g}+8.3 \mathrm{~g}=11.5 \mathrm{~g}$
b) $21.05 \mathrm{~cm}-12.1 \mathrm{~cm}=9.0 \mathrm{~cm}$
c) $\frac{1.50 \times 10^{-2} \mathrm{~mol}}{40.0 \mathrm{~mL}}=3.75 \times 10^{-4} \mathrm{~mol} / \mathrm{mL}$
d) $\frac{432.8 \mathrm{~g}}{21.8 \mathrm{~cm} \mathrm{x} \mathrm{(7.645cm-3.58cm)}=\frac{432.8 \mathrm{~g}}{21.8 \mathrm{~cm} \times 4.065}=4.88 \mathrm{~g} / \mathrm{cm}^{2} .8 \mathrm{~cm}}=4$
6. Convert 12 milliamperes into megaamperes.

$$
12 \times \mathrm{AA} \times \frac{1 \mathrm{~A}}{10^{3} \mathrm{~mA}} \times \frac{1 \mathrm{MA}}{10^{6} \mathrm{~A}}=1.2 \times 10^{-8} \mathrm{MA}
$$

7. Convert $42.6 \mu \mathrm{~mol} / \mathrm{mL}$ into $\mathrm{mol} / \mathrm{L}$.

$$
\frac{42.6 \mu \mathrm{mot}}{m \mathrm{t}} \times \frac{10^{3} \mathrm{mt}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{10^{6} \text { mot }}=0.0426 \mathrm{~mol} / \mathrm{L}
$$

8. Determine how many significant figures are in each of the following numbers:
a) 1.00300

6
b) $780.00 \quad 5$
c) $0.1110 \quad 4$
e) 0.003050
d) 3000
f) $7,000,800$
g) 0.00567
h) 3.000

Mole Conversions:

1. Calculate the MOLAR MASS of the following substances.
a) CuSO_{4}

$$
\begin{aligned}
& C 01 \times 63.5=63.5 \quad \text { b) } \mathrm{Ca} \\
& \text { S: } 1 \times 32.1=32.1 \\
& 0.4 \times 16.0=64.0 \\
& \hline
\end{aligned}
$$

b) $\mathrm{Ca}\left(\mathrm{MnO}_{4}\right)_{2}$

$$
\begin{aligned}
& C a: 1 \times 40.1=40.1 \\
& M n: 2 \times 54.9=109.8 \\
& \frac{0: 8 \times 16.0=128.0}{277.9 \mathrm{~g} / \mathrm{mol}}
\end{aligned}
$$

2. Calculate the number of moles of CO_{2} that would be present in 8.7×10^{18} molecules of CO_{2}.

$$
8.7 \times 10^{18} \text { molecules } \times \frac{1 \text { mol }}{6.022 \times 10^{23} \text { molecotes }}=1.4 \times 10^{-5} \mathrm{~mol} \mathrm{co}_{2}
$$

3. How many grams of Copper would be present in 4.5×10^{-3} moles of Copper?

$$
4.5 \times 10^{-3} \operatorname{mot} x \frac{63.59}{10001}=0.29 \mathrm{~g}
$$

4. Calculate the mass (in g) of 2.7×10^{21} molecules of ammonia $\left(\mathrm{NH}_{3}\right) \rightarrow 14.0+3.0=17.0 \mathrm{~g} / \mathrm{mol}$

$$
2.7 \times 10^{21} \text { molecules } \times \frac{1001}{6.022 \times 10^{23} \text { molectes }} \times \frac{17.0 \mathrm{~g}}{10001}=0.076 \mathrm{gH}_{3}
$$

5. Determine the mass (in grams) of one atom of Silver.

$$
1 \mathrm{at} 6 \mathrm{~m} \times \frac{1 \mathrm{mot}}{6.022 \times 10^{23} \mathrm{atams}} \times \frac{107.9 \mathrm{~g}}{1.0061}=1.792 \times 10^{-22} \mathrm{~g} \mathrm{Ag}
$$

6. How many molecules are in 75.6 g of $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OH})_{2} \mathrm{CH}_{3} ? \rightarrow(12.0 \times 3)+(16.0 \times 2)+(1.0 \times 8)$

$$
75.6 \mathrm{~g} \times \frac{1 \text { mo 1 }}{76.08} \times \frac{6.022 \times 10^{23} \text { molecules }}{1 \text { met }}=5.99 \times 10^{23} \text { molecdes }=76.0 \mathrm{~g}
$$

7. What is the volume occupied by 15 mg of $\mathrm{SbH}_{3(\mathrm{~g})}$ at STP ?

$$
15 \mathrm{mg} \times \frac{1 \mathrm{~g}}{10^{3} \mathrm{mg}} \times \frac{\operatorname{lmot}}{124.8 \mathrm{~g}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{mot}}=0.0027 \mathrm{LSbH}_{3}
$$

Percentage Composition, Empirical and Molecular Formulae:

1. Write the empirical formula for each of the following compounds.

$$
\begin{array}{ll}
\text { a) } \mathrm{P}_{4} \mathrm{O}_{10} & \mathrm{P}_{2} \mathrm{O}_{5} \\
\mathrm{Mg}_{2} \mathrm{Cl}_{4} & \mathrm{MgCl}_{2}
\end{array}
$$

c) $\mathrm{Pb}_{2}\left(\mathrm{CO}_{3}\right)_{4}$

$$
\mathrm{Pb}\left(\mathrm{CO}_{3}\right)_{2}
$$

d) $\mathrm{N}_{2} \mathrm{O}_{2}$

2. Calculate the percentage composition by mass of each of the following compounds.

$$
\begin{aligned}
& \text { a) } \mathrm{CO}_{2} \\
& \text { Total mass }=(12.0 \times 1)+(16.0 \times 2) \\
& =44.0 \mathrm{~g} / \mathrm{mol} \\
& \% \mathrm{C}=\frac{12.0 \mathrm{~g}}{44.0 \mathrm{~g}} \times 100 \%=27.3 \% \mathrm{C} \\
& \% 0=\frac{32.0 \mathrm{~g}}{44.0 \mathrm{~g}} \times 100 \%=72.7 \% 0
\end{aligned}
$$

3. Calculate the percentage composition of the bold species in each of the following compounds.
a) $\mathrm{Cu}\left(\mathbf{N} \mathbf{O}_{3}\right)_{2}$

$$
\begin{aligned}
& \text { Total mass }=187.5 \mathrm{~g} / \mathrm{mol} \\
& \mathrm{NO}_{3} \mathrm{mass}=2(14+(3 \times 16.0))=124.0 \mathrm{~g} / \mathrm{mol} \\
& \frac{124.0 \mathrm{~g} / \mathrm{mol}}{187.5 \mathrm{~g} / \mathrm{mol}} \times 10076=66 . \mathrm{l} / \mathrm{NO}_{3}
\end{aligned}
$$

Total mass $=171 \mathrm{O} / \mathrm{g} / \mathrm{mol}$ $\mathrm{H}_{2} \mathrm{O}$ mass $=90.0 \mathrm{~g} / \mathrm{mol}$

$$
\% \mathrm{oH}_{2} \mathrm{O}=\frac{90 . \mathrm{O}_{\mathrm{g}} / \mathrm{mol}}{171 . \mathrm{gglnol}} \times 10070=52.6 \% \mathrm{H}_{2} \mathrm{O}
$$

4. a) A compound has the following composition: $24.24 \% \mathrm{C}, 4.04 \% \mathrm{H}$ and $71.72 \% \mathrm{Cl}$. What is the empirical formula of the compound?

$$
\begin{aligned}
& \text { mol }=24.24 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{12.0 \mathrm{~g}}=2.02 \mathrm{~mol} / 2.02=1 \quad E_{.} F_{0}=C \mathrm{H}_{2} \mathrm{Cl} \\
& \mathrm{~mol} \mathrm{H}: 4.04 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{1.0 \mathrm{~g}}=4.04 \mathrm{~mol} / 2.02=2 \\
& \text { mol } \mathrm{Cl}: 71.72 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{35 \mathrm{gg}}=2.02 \mathrm{~mol} / 2.02=1
\end{aligned}
$$

b) If the molecular mass of this compound is $99.5 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula?

$$
\begin{aligned}
& n=\frac{\text { molecular molar mass }}{\text { empirical molar mass }}=\frac{99.5 \mathrm{~g} / \mathrm{mol}}{49.5 \mathrm{~g} / \mathrm{md}}=2 \quad \begin{array}{l}
\text { Molecular formula } \\
E_{0} F=(1 \times 120)+(2 \times 1.0)+(1 \times 35.5)=49.5 \mathrm{~g} / \mathrm{mol}
\end{array} \quad \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}
\end{aligned}
$$

5. The molar mass of a compound is $58 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of the compound if the empirical formula is $\mathrm{C}_{2} \mathrm{H}_{5}$?

$$
\begin{aligned}
& n=\frac{\text { molecular mass }}{\text { empirical mass }}=\frac{58 \mathrm{~g} / \mathrm{mol}}{29.0 \mathrm{~g} / \mathrm{mol}}=2 \quad \begin{array}{r}
\text { molecular formula } \\
=C_{4} H_{i o}
\end{array} \\
& E F=(2 \times 12.0)+(5 \times 1.0)=29.0 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Molarity Calculations:
$\rightarrow 40.0 \mathrm{~g} / \mathrm{mol}$

1. If a 4.50 g sample of solid NaOH is dissolved to make 0.500 L of solution, what is the molarity of the solution?

$$
\frac{4.50 g}{0.500 L} \times \frac{1 \mathrm{~mol}}{40.0 g}=0.225 \mathrm{M}
$$

2. How many grams of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ would be required to produce 400.0 mL of $0.600 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$? $\rightarrow 1060 \mathrm{Og}$

$$
400.00 x \times \frac{1 K}{10^{3} \mathrm{mt}} \times \frac{0.600 .90 t}{1 \not \angle} \times \frac{106.0 \mathrm{~g}}{1 \mathrm{mot}}=25.4 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3}
$$

3. If 75.7 g of Magnesium chloride are mixed with sufficient water to make a 0.885 M solution, what is the volume of the solution? $\mathrm{MgCl}_{2}=95.3 \mathrm{~g} / \mathrm{mol}$

$$
75.7 \mathrm{~g} \times \frac{1 \mathrm{nol}}{95.3 g} \times \frac{1 L}{0.885 \mathrm{mot}}=0.898 L
$$

4. How many mL of $16.4 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ are needed to prepare 755 mL of $0.25 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?

$$
\begin{array}{lcl}
m_{1}=16.4 M & m_{1} v_{1}=m_{2} v_{2} & v_{1}=\frac{0.25 M \times 755 \mathrm{~mL}}{16.4 \mathrm{M}} \\
v_{1}=? & v_{1}=\frac{m_{2} v_{2}}{m_{1}} & v_{1}=12 \mathrm{~mL} \\
v_{2}=0.25 M & &
\end{array}
$$

Chemical Reactions and Equations:

1. Balance and classify the following chemical reactions.
a) $2 \mathrm{KNO}_{3} \rightarrow 2 \mathrm{KNO}_{2}+1 \mathrm{O}_{2}$
b) $1 \mathrm{CaC}_{2}+2 \mathrm{O}_{2} \rightarrow 1 \mathrm{Ca}+2 \mathrm{CO}_{2}$
c) $1 \mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
d) $1 \mathrm{~K}_{2} \mathrm{SO}_{4}+1 \mathrm{BaCl}_{2} \rightarrow 2 \mathrm{KCl}+1 \mathrm{BaSO}_{4}$
e) $2 \mathrm{KOH}+1 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 1 \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
f) $1 \mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \rightarrow 2 \mathrm{NH}_{4} \mathrm{OH}+1 \mathrm{CaCl}_{2}$
g) $4 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~S}+29 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+4 \mathrm{SO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$
h) $2 \mathrm{C}_{15} \mathrm{H}_{30}+45 \mathrm{O}_{2} \rightarrow 3 \mathrm{OCO}_{2}+30 \mathrm{H}_{2} \mathrm{O}$
i) $2 \mathrm{BN}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{BF}_{3}+1 \mathrm{~N}_{2}$
j) $2 \mathrm{Na}+1 \mathrm{ZnI}_{2} \rightarrow 2 \mathrm{NaI}+1 \mathrm{Zn}$

Type of Reaction
Decomposition
Single Replacement
Combustion
Double Replacement
Neutralization
Double Replacement
Combustion
Combustion
Single Replacement
Single Replacement
2. Classify, complete AND balance the following chemical equations. Type of Reaction
a) $\frac{1}{4} \mathrm{Ni}_{(\mathrm{s})}+\frac{1}{1} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(a)} \rightarrow 1 \mathrm{Cu}+1 \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$
b) $4 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{O}_{2(8)} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
c) $2 \mathrm{NaCl}_{(\mathrm{s})} \rightarrow 2 \mathrm{Na}+1 \mathrm{Cl}_{2}$
d) $1 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+1 \mathrm{Na}_{2} \mathrm{SO}_{4}$
e) $2 \mathrm{C}_{4} \mathrm{H}_{10(\mathrm{l})}+13 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 8 \mathrm{CO}+10 \mathrm{H}_{2} \mathrm{O}$
f) $2 \mathrm{Ag}_{(\mathrm{s})}+1 \mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{AgCl}$
g) $1 \mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{KI}_{(\mathrm{s})} \rightarrow 2 \mathrm{KCl}+1 I_{2}$
h) $1 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{AgCl}_{(\mathrm{aq})} \rightarrow 3 \mathrm{Ag}+\frac{1}{\mathrm{FeCl}}{ }_{3}$

Single Replacement
Synthesis

Neutralization
Combustion Synthesis
Single Replacement Single Replacement
i) $2 \mathrm{AgNO}_{3(a 9)}+1 \mathrm{BaCl}_{2(a)} \rightarrow 2 \mathrm{AgCl}+1 \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ Double Replacement
j) $\perp \mathrm{BaCO}_{3(a)}+1 \mathrm{Sr}\left(\mathrm{OH}_{2(a \mathrm{a})} \rightarrow 1 \mathrm{SrCO}_{3}+1 \mathrm{BClOH} \mathrm{H}_{2}\right.$ Double Replacement
k) $1 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}+3 \mathrm{O}_{2(\mathrm{~s})} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

1) $1 \mathrm{HNO}_{3(\mathrm{aq})}+1 \mathrm{KOH}_{(\mathrm{aq})} \rightarrow \perp \mathrm{H}_{2} \mathrm{O}+1 \mathrm{KNO}_{3}$

Energy of Reactions:

1. Define ENDOTHERMIC and EXOTHERMIC reactions.

Endothermicheat is absorbed from the surroundings during the reaction
Exchemic: heat is released by the reaction into the surroundings
2. Classify the following reactions as either endothermic or exothermic.
a) $2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+$ energy
b) $\mathrm{N}_{2} \mathrm{O}_{4}+$ energy $\rightarrow \mathrm{N}_{2}+2 \mathrm{O}_{2}$
c) $\mathrm{AB}+\mathrm{C} \rightarrow \mathrm{CB}+\mathrm{A}+56.9 \mathrm{~kJ}$
d) $\mathrm{AB}+\mathrm{CD} \rightarrow \mathrm{AD}+\mathrm{BC} \quad \triangle \mathrm{H}=-256.4 \mathrm{~kJ}$
exothermic.
endothermic
exothermic
exothermic

Stoichiometry:

1. Ammonia combines with oxygen gas in the following reaction:

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{NO}
$$

a) How many moles of NH_{3} are needed to combine with 3.57 moles of O_{2} gas?

$$
3.57 \mathrm{mot} \mathrm{C}_{2} \times \frac{4 \mathrm{~mol} \mathrm{NH}}{3} \text { mot } \mathrm{O}_{2} \quad 2.86 \mathrm{~mol} \mathrm{NH}_{3}
$$

b) If 1.5 grams of NO is produced in the above reaction, how many grams of NH_{3} were reacted?

$$
1.5 \mathrm{gNO}^{\circ} \times \frac{1 \mathrm{~mol} \mathrm{NO}}{30.0 \mathrm{gNO}} \times \frac{4 \mathrm{~mol} \mathrm{NH}}{3} 1 \mathrm{~mol} \mathrm{NO} \times \frac{17.0 \mathrm{~g} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{NH}_{3}}=0.85 \mathrm{~g} \mathrm{NH}_{3}
$$

2. $\quad 3 \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{FeCl}_{3} \rightarrow \mathbf{N a C l}+\mathrm{Fe}_{2}(\mathrm{CO})_{3}$
a) How many grams of NaCl will be produced from the reaction of 0.080 moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ with excess FeCl_{3} ?

$$
0.080 \mathrm{~mol} \mathrm{Na} \mathrm{CO}_{3} \times \frac{6 \mathrm{~mol} \mathrm{NaCl}}{3 \mathrm{~mol} \mathrm{Na} \mathrm{CO}_{3}} \times \frac{58.5 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCl}}=9.4 \mathrm{~g} \mathrm{NaCl}
$$

b) How many grams of $\mathrm{FeCl}_{3} \rightarrow 1623 \mathrm{~g}$ would be needed to react with 4.2 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$? $106.0 \mathrm{~g} / \mathrm{mol}$

$$
4.2 \mathrm{ga}_{2} \mathrm{CO}_{3} \times \frac{1 \mathrm{mal}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}^{106 . \mathrm{g} \mathrm{NaCO}_{3}} \times \frac{2 \mathrm{molFel}_{3}}{3 \mathrm{mel} \mathrm{Na}_{2} \mathrm{CO}_{3}} \times \frac{162.3 \mathrm{~g} \mathrm{FeCl}_{3}}{1 \mathrm{matFCl}_{3}}=4.3 \mathrm{~g} \mathrm{FeCl}}{3}
$$

3.

$$
3 \mathrm{Mg}+2 \mathrm{AlCl}_{3} \rightarrow 3 \mathrm{MgCl}_{2}+2 \mathrm{Al}
$$

a) How many grams of MgCl_{2} would be formed if 50.0 mL of $0.200 \mathrm{M} \mathrm{AlCl}_{3}$ is reacted with excess Mg ? $\rightarrow 95.3 \mathrm{ginal}$

$$
\begin{array}{r}
50.0 \text { pt } \times \frac{1 K}{10^{3} \mathrm{~mL}} \times \frac{0.200 \mathrm{~mol}^{2} \mathrm{Ali}_{3}}{1 K} \times \frac{3 \text { mot } \mathrm{MgCl}}{2 \mathrm{~mol}_{2}} \times \frac{95.3 \mathrm{AMgCl}_{3}}{1 \mathrm{~mol} \mathrm{MgCl}_{2}} \\
=1.43 \mathrm{~g} \mathrm{MgCl}
\end{array}
$$

b) How many mL of $0.150 \mathrm{M} \mathrm{AlCl}_{3}$ would be needed to react completely with 2.00 g of Mg ?

$$
\begin{array}{r}
2.00 \mathrm{~g} \mathrm{Mg} \times \frac{1 \mathrm{motHg}}{24.3 \mathrm{gHg} \mathrm{gg}} \times \frac{2 \mathrm{mot} \mathrm{AlCl}_{3}}{3 \mathrm{motHg}} \times \frac{1 \mathrm{LAlCl}_{3}}{0.150 \mathrm{molAHI}_{3}} \times \frac{10^{3} \mathrm{mLAlCl}_{3}}{1 \mathrm{LAlCl}_{3}} \\
=366 \mathrm{~mL} \mathrm{AlCl} 3
\end{array}
$$

Excess and Limiting Reagents/Percent Yield:
1.

$$
2 \mathrm{Fe}_{2} \mathrm{~S}_{3}+9 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{SO}_{2}
$$

In a chemical reaction 6.92 g of $\mathrm{Fe}_{2} \mathrm{~S}_{3}$ is combined with 4.54 g of oxygen gas.
a) Which reactant is the LIMITING reagent?

$$
6.92 \mathrm{Fe} \mathrm{Fe}_{3} \times \frac{1 \mathrm{molFe}_{2} \mathrm{~S}_{3}}{207.9_{3}} \times \frac{2 \mathrm{molFe}_{2} \mathrm{O}_{3}}{2 \mathrm{~mole} \mathrm{Fe}_{3}}=0.0333 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

$$
4.54 \mathrm{~g} \mathrm{O} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{o}_{2}}{320 \mathrm{Og}} \times \frac{2 m \mathrm{molfo}}{9 \mathrm{mil} \mathrm{O}_{2}}=0.0315 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

$\therefore \mathrm{O}_{2}$ is limiting
b) How many grams of the EXCESS reactant will be left over after the reaction is complete?
c) How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ can be formed in this reaction?

$$
0.0315 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \times \frac{159.69 \mathrm{Fe}_{2} \mathrm{O}_{3}}{1 \mathrm{mdFe}_{2} \mathrm{O}_{3}}=5.03 \mathrm{~g} \mathrm{Fe} \mathrm{Fe}_{3}
$$

2. What mass of P_{4} will be produced when 41.5 g of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}, 26.3 \mathrm{~g}$ of SiO_{2}, and 7.80 g of C are reacted according to the following balanced equation?
a) How many grams of aluminum oxide, $\mathrm{Al}_{2} \mathrm{O}_{3}$, would be expected to form in the reaction of 15.0 g Al with 18.43 g of oxygen gas?
b) If the actual yield of $\mathrm{Al}_{2} \mathrm{O}_{3}$ produced in the reaction was only $22.4 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$, what would the PERCENT YIELD of the reaction be?

$$
\% \text { yield }=\frac{\text { actual }}{\text { theoretical }} \times 100 \%=\frac{22.4 \mathrm{~g}}{28.3 \mathrm{~g}} \times 100 \%=79.2 \% \text { yield }
$$

$$
\begin{aligned}
& 15.0 \mathrm{gAt} \times \frac{1 \mathrm{~mol} A X}{27 . \mathrm{Og} A+} \times \frac{2 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}{4 \mathrm{~mol} \mathrm{AI}} \times \frac{102 . \mathrm{Og}_{2} \mathrm{Al}_{3}}{1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}}=28.3 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3} \\
& \text {-limiting, so this och } \\
& \text { is made! } \\
& 18.43 \mathrm{~g} \mathrm{O}_{2} \times \frac{\operatorname{lmol} \sigma_{2}}{32 . \mathrm{gg}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Ato}_{3}}{3 \mathrm{~mol} \mathrm{O}_{2}} \times \frac{102 . \mathrm{gAl}_{2} \mathrm{O}_{3}}{1 \mathrm{mot} \mathrm{At}_{2} \mathrm{O}_{3}}=39.2 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{SiO}_{2}+10 \mathrm{C} \rightarrow \mathrm{P}_{4}+6 \mathrm{CaSiO}_{3}+10 \mathrm{CO} \\
& 41.5 \mathrm{~g} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2 \times} \times \frac{1 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{~Pa}_{2}\right)_{2}}{310.3 \mathrm{~g}\left(\mathrm{a}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right.} \times \frac{1 \mathrm{~mol} \mathrm{P}_{4}}{2 \mathrm{~mol} \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}}=0.06 \mathrm{~g} \mathrm{SiO}_{2} 9 \mathrm{~mol} \\
& 26.3 \mathrm{~g} \mathrm{SiO}_{2} \times \frac{\mathrm{lmol} \mathrm{SiO}_{2}}{60.1 \mathrm{~g} \mathrm{SiO}} \times \frac{1 \mathrm{~mol} \mathrm{P}}{4} 3\left(\mathrm{PO}_{4}\right)_{2}
\end{aligned}
$$

$$
\begin{aligned}
& 4.54 \mathrm{~g} \mathrm{O}_{2} \times \frac{1 \mathrm{molO}_{2}}{32 . \mathrm{OgO}_{2}} \times \frac{2 \mathrm{molFe}_{2} \mathrm{~S}_{3}}{9 \mathrm{malO}_{2}} \times \frac{207.9 \mathrm{gre}_{3} \mathrm{~S}_{3}}{\mathrm{imolFe}_{3}}=6.55 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{~S}_{3} \text { used up } \\
& 0_{0} 6.92-6.55 \mathrm{~g}=0.37 \mathrm{~g} \mathrm{Fe}_{2} 5_{3} \text { left over }
\end{aligned}
$$

