PART A: MULTIPLE CHOICE
Value: 62.5% of the examination

INSTRUCTIONS: For each question, select the best answer.

1. Solid sodium metal reacts rapidly with water in an open beaker to produce aqueous sodium hydroxide and hydrogen gas. A change in which of the following could be used to measure the rate of this reaction?

 A. the volume of the solution
 B. the pressure of the hydrogen gas
 C. the concentration of the solid sodium
 D. the mass of the beaker and its contents

2. Which of the following factors will increase the reaction rate of a heterogeneous reaction, but not of a homogeneous reaction?

 A. adding a catalyst
 B. increasing temperature
 C. increasing concentration
 D. increasing surface area
3. Which of the following could represent the relationship of activation energy to reaction rate?

A. \[E_a \] \[\rightarrow \] Rate

B. \[E_a \] \[\rightarrow \] Rate

C. \[E_a \] \[\rightarrow \] Rate

D. \[E_a \] \[\rightarrow \] Rate

4. Consider the following:

<table>
<thead>
<tr>
<th>I</th>
<th>the electrolysis of water</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>the freezing of water</td>
</tr>
<tr>
<td>III</td>
<td>the melting of CuCl₂</td>
</tr>
<tr>
<td>IV</td>
<td>the combustion of CH₄</td>
</tr>
</tbody>
</table>

Which of the above would have a negative \(\Delta H \) value?

A. II only
B. I and III only
C. II and IV only
D. I, III and IV
5. Consider the following reaction mechanism:

<table>
<thead>
<tr>
<th>Step</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>(\text{H}_2\text{O}_2 + \text{I}^- \rightarrow \text{H}_2\text{O} + \text{IO}^-)</td>
</tr>
<tr>
<td>Step 2</td>
<td>(\text{H}_2\text{O}_2 + \text{IO}^- \rightarrow \text{H}_2\text{O} + \text{O}_2 + \text{I}^-)</td>
</tr>
</tbody>
</table>

Which of the following is correct?

<table>
<thead>
<tr>
<th>Activated complex</th>
<th>Catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. (\text{H}_2\text{O}_2\text{IO}^-)</td>
<td>(\text{I}^-)</td>
</tr>
<tr>
<td>B. (\text{H}_2\text{O}_2\text{I}^-)</td>
<td>(\text{IO}^-)</td>
</tr>
<tr>
<td>C. (\text{IO}^-)</td>
<td>(\text{I}^-)</td>
</tr>
<tr>
<td>D. (\text{IO}^-)</td>
<td>(\text{O}_2)</td>
</tr>
</tbody>
</table>

6. Consider the following equilibrium:

\[
\text{PCl}_3 \text{ (g)} + \text{Cl}_2 \text{ (g)} \rightleftharpoons \text{PCl}_5 \text{ (g)}
\]

Initially, some \(\text{PCl}_3 \) and \(\text{Cl}_2 \) are placed in a flask. Which of the following describes what happens to the reverse reaction rate and to the pressure of the system as equilibrium is established?

<table>
<thead>
<tr>
<th>Reverse reaction rate</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. increases</td>
<td>increases</td>
</tr>
<tr>
<td>B. increases</td>
<td>decreases</td>
</tr>
<tr>
<td>C. decreases</td>
<td>decreases</td>
</tr>
<tr>
<td>D. decreases</td>
<td>increases</td>
</tr>
</tbody>
</table>
7. Consider the following system:

$$2\text{NO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g)$$

Which of the following would indicate whether equilibrium had been established?

A. $[\text{NO}] > [\text{O}_2]$
B. $[\text{NO}] = 2[\text{O}_2]$
C. $[\text{O}_2] = 2[\text{NO}]$
D. $[\text{NO}]$ is constant

8. Consider the following:

$$\text{energy} + 6\text{CO}_2(g) + 6\text{H}_2\text{O}(l) \underset{\text{C}_6\text{H}_{12}\text{O}_6(s) + 6\text{O}_2(g)}{\rightleftharpoons}$$

Which of the following describes how enthalpy and entropy change in the forward direction?

<table>
<thead>
<tr>
<th>Enthalpy</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>increases decreases</td>
</tr>
<tr>
<td>B.</td>
<td>increases increases</td>
</tr>
<tr>
<td>C.</td>
<td>decreases increases</td>
</tr>
<tr>
<td>D.</td>
<td>decreases decreases</td>
</tr>
</tbody>
</table>

9. Considering changes in enthalpy and entropy, which of the following will react completely?

A. $2\text{O}_3(g) \underset{\Delta H = -285 \text{ kJ}}{\rightleftharpoons} 3\text{O}_2(g)$
B. $\text{C(s)} + 2\text{H}_2(g) \underset{\Delta H = -74 \text{ kJ}}{\rightleftharpoons} \text{CH}_4(g)$
C. $2\text{SO}_2(g) + \text{O}_2(g) \underset{\Delta H = -197 \text{ kJ}}{\rightleftharpoons} 2\text{SO}_3(g)$
D. $\text{C}_2\text{H}_2(g) + \text{Ca(OH)}_2(aq) \underset{\Delta H = +183 \text{ kJ}}{\rightleftharpoons} \text{CaC}_2(s) + 2\text{H}_2\text{O}(l)$
10. Consider the following system at equilibrium:

\[2\text{HI}(g) + \text{Cl}_2(g) \rightleftharpoons 2\text{HCl}(g) + \text{I}_2(s) \]

Which of the following describes the equilibrium shift and the change in the concentration of \(\text{Cl}_2(g) \) when some \(\text{I}_2(s) \) is added?

<table>
<thead>
<tr>
<th>Equilibrium shift</th>
<th>[Cl(_2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. no shift</td>
<td>no change</td>
</tr>
<tr>
<td>B. left</td>
<td>increases</td>
</tr>
<tr>
<td>C. left</td>
<td>decreases</td>
</tr>
<tr>
<td>D. right</td>
<td>increases</td>
</tr>
</tbody>
</table>

11. Consider the equilibrium system:

\[\text{N}_2(g) + 3\text{Cl}_2(g) \rightleftharpoons 2\text{NCl}_3(g) \quad \Delta H = +460 \text{ kJ} \]

Which of the following describes what happens when some \(\text{NCl}_3 \) is added?

<table>
<thead>
<tr>
<th>Equilibrium Shift</th>
<th>Value of (K_{eq})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. right</td>
<td>remains constant</td>
</tr>
<tr>
<td>B. right</td>
<td>increases</td>
</tr>
<tr>
<td>C. left</td>
<td>remains constant</td>
</tr>
<tr>
<td>D. left</td>
<td>decreases</td>
</tr>
</tbody>
</table>
12. Consider the following equilibrium:

\[\text{2BN(s) + 3Cl}_2(g) \rightleftharpoons \text{2BCl}_3(g) + \text{N}_2(g) \quad K_{eq} = 1.6 \times 10^{-3} \]

Which of the following would be the value of \(K_{eq} \) for the reaction:

\[\text{BN(s) + } \frac{3}{2} \text{Cl}_2 \rightleftharpoons \text{BCl}_3 + \frac{1}{2} \text{N}_2 \]

A. \(1.6 \times 10^{-3} \)
B. \(3.2 \times 10^{-3} \)
C. \(4.0 \times 10^{-2} \)
D. \(8.0 \times 10^{-4} \)

13. The following equilibrium system was observed in a 1.0 L flask:

\[\text{Sb}_2\text{S}_3(s) + 3\text{H}_2(g) \rightleftharpoons 2\text{Sb}(s) + 3\text{H}_2\text{S(g)} \quad K_{eq} = 0.43 \]

At equilibrium, there were 0.60 mol \(\text{Sb}_2\text{S}_3 \), 1.10 mol \(\text{H}_2 \) and 0.80 mol \(\text{Sb} \).
What was the equilibrium \([\text{H}_2\text{S}]\)?

A. 0.57 M
B. 0.81 M
C. 0.83 M
D. 1.5 M
14. Consider the equilibrium:

$$2\text{NO}_2\text{Cl}(g) \rightleftharpoons 2\text{NO}_2(g) + \text{Cl}_2(g) \quad K_{eq} = 0.56$$

If 0.80 mol NO_2Cl, 0.32 mol NO_2 and 0.66 mol Cl_2 are placed in a 1.0 L container, which of the following describes what happens?

A. The system proceeds left and $[\text{NO}_2]$ increases.
B. The system proceeds left and $[\text{NO}_2]$ decreases.
C. The system proceeds right and $[\text{NO}_2]$ increases.
D. The system proceeds right and $[\text{NO}_2]$ decreases.

15. Which of the following will form a molecular solution when it is dissolved in water?

A. CsCl
B. CaC$_2$O$_4$
C. Cr(NO$_3$)$_3$
D. CH$_3$CH$_2$OH

16. A 1.0 L sample of saturated solution was prepared at 25°C. The saturated solution was then allowed to evaporate at 25°C until 0.25 L of solution remained. The concentration of the saturated solution after evaporation was

A. the same as before evaporation.
B. 3 times lower than before evaporation.
C. 4 times lower than before evaporation.
D. 4 times higher than before evaporation.

17. Which of the following salts has a solubility less than 0.1 M?

A. FeCl$_2$
B. CaCl$_2$
C. FeSO$_4$
D. CaSO$_4$
18. A solution contains the anions S^{2-} and OH^-. Which of the following compounds could be added to precipitate only one of these anions?

A. $Sr(NO_3)_2$
B. $Al(NO_3)_3$
C. $Zn(NO_3)_2$
D. $Mg(NO_3)_2$

19. Consider the equation for a saturated solution of potassium chromate:

$$K_2CrO_4(s) + \text{energy} \leftrightharpoons 2K^+(aq) + CrO_4^{2-}(aq)$$

A concentration vs. time graph for a saturated solution of K_2CrO_4 is shown below.

What happened at time t?

A. KNO_3 was added to the system.
B. K_2CrO_4 was removed from the system.
C. The temperature of the system was increased.
D. The temperature of the system was decreased.
20. Consider the following solubility equilibrium:

\[\text{Sr}_3\text{(PO}_4\text{)}_2\text{(s)} \rightleftharpoons 3\text{Sr}^{2+}\text{(aq)} + 2\text{PO}_4^{3-}\text{(aq)} \]

The \(K_{sp} \) expression is

A. \(K_{sp} = [\text{Sr}^{2+}]^3[\text{PO}_4^{3-}]^2 \)

B. \(K_{sp} = [3\text{Sr}^{2+}][2\text{PO}_4^{3-}] \)

C. \(K_{sp} = [3\text{Sr}^{2+}]^3[2\text{PO}_4^{3-}]^2 \)

D. \(K_{sp} = \frac{[3\text{Sr}^{2+}]^3[2\text{PO}_4^{3-}]^2}{[\text{Sr}_3\text{(PO}_4\text{)}_2]} \)

21. A solution is found to contain \([\text{Pb}^{2+}] = 0.10\text{M}\). What is the maximum \([\text{SO}_4^{2-}]\) that can exist in this solution before a precipitate forms?

A. \([\text{SO}_4^{2-}] = 1.8 \times 10^{-9}\text{ M}\)

B. \([\text{SO}_4^{2-}] = 1.8 \times 10^{-8}\text{ M}\)

C. \([\text{SO}_4^{2-}] = 1.8 \times 10^{-7}\text{ M}\)

D. \([\text{SO}_4^{2-}] = 1.3 \times 10^{-4}\text{ M}\)

22. Which of the following general properties could be used to describe a basic solution?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>conducts electricity</td>
</tr>
<tr>
<td>II</td>
<td>reacts with (\text{Na}_2\text{CO}_3) to produce (\text{CO}_2)</td>
</tr>
<tr>
<td>III</td>
<td>feels slippery</td>
</tr>
</tbody>
</table>

A. III only
B. I and III only
C. II and III only
D. I, II and III
23. Which of the following is a conjugate acid base pair?

<table>
<thead>
<tr>
<th>Acid</th>
<th>Conjugate base</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. NH₄⁺</td>
<td>NH₃</td>
</tr>
<tr>
<td>B. H₃O⁺</td>
<td>OH⁻</td>
</tr>
<tr>
<td>C. H₃PO₄</td>
<td>HPO₄²⁻</td>
</tr>
<tr>
<td>D. HPO₄²⁻</td>
<td>H₂PO₄⁻</td>
</tr>
</tbody>
</table>

24. Consider the following 1.0 M acid solutions:
- H₂CO₃
- HClO₄
- H₅C₆H₅O₇

Rank the acid solutions in order of decreasing conductivity.

A. H₅C₆H₅O₇ > H₂CO₃ > HClO₄
B. HClO₄ > H₂CO₃ > H₅C₆H₅O₇
C. H₂CO₃ > H₅C₆H₅O₇ > HClO₄
D. HClO₄ > H₅C₆H₅O₇ > H₂CO₃

25. Water reacts most completely as a base with which of the following?

A. HSO₃⁻
B. H₃BO₃
C. H₂PO₄⁻
D. Al(H₂O)₆³⁺
26. Which species in solution will produce the greatest hydroxide ion concentration?

A. \(F^- \)
B. \(H_2S \)
C. \(PO_4^{3-} \)
D. \(HPO_4^{2-} \)

27. A base is added to water and a new equilibrium is established. The new equilibrium can be described by

A. \(pH < pOH \) and \(K_w = 1 \times 10^{-14} \)
B. \(pH < pOH \) and \(K_w < 1 \times 10^{-14} \)
C. \(pH > pOH \) and \(K_w = 1 \times 10^{-14} \)
D. \(pH > pOH \) and \(K_w > 1 \times 10^{-14} \)

28. The ionization of water is endothermic. Which of the following could be correct if the temperature of water is decreased?

<table>
<thead>
<tr>
<th>(K_w)</th>
<th>(pH)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>decreases</td>
<td>7.1</td>
<td>basic</td>
</tr>
<tr>
<td>increases</td>
<td>6.8</td>
<td>acidic</td>
</tr>
<tr>
<td>decreases</td>
<td>7.1</td>
<td>neutral</td>
</tr>
<tr>
<td>stays the same</td>
<td>7.0</td>
<td>neutral</td>
</tr>
</tbody>
</table>
29. Which of the following graphs describes the relationship between \([OH^-]\) and \([H^+]\)?

A.
\[
\begin{array}{c}
\text{[OH}^-\text{]} \\
\text{[H}^+\text{]}
\end{array}
\]

B.
\[
\begin{array}{c}
\text{[OH}^-\text{]} \\
\text{[H}^+\text{]}
\end{array}
\]

C.
\[
\begin{array}{c}
\text{[OH}^-\text{]} \\
\text{[H}^+\text{]}
\end{array}
\]

D.
\[
\begin{array}{c}
\text{[OH}^-\text{]} \\
\text{[H}^+\text{]}
\end{array}
\]

30. Which of the following 0.10 M solutions of ions would have the highest pH?

A. \(\text{CN}^-\)

B. \(\text{NH}_4^+\)

C. \(\text{SO}_4^{2-}\)

D. \(\text{Cr(H}_2\text{O)}_6^{3+}\)
31. Which of the following describes the relationship between base strength and K_b value?

<table>
<thead>
<tr>
<th>Base Strength</th>
<th>K_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. increases</td>
<td>increases</td>
</tr>
<tr>
<td>B. increases</td>
<td>decreases</td>
</tr>
<tr>
<td>C. decreases</td>
<td>increases</td>
</tr>
<tr>
<td>D. decreases</td>
<td>remains constant</td>
</tr>
</tbody>
</table>

32. The value of K_b for HPO_4^{2-} is

A. 1.6×10^{-7}
B. 4.5×10^{-2}
C. 6.2×10^{-8}
D. 2.2×10^{-13}

33. Which of the following 1.0 M solutions would have a pH greater than 7.00?

A. HF
B. KNO_3
C. NH_4Cl
D. KCH_3COO

34. What is the pH at the transition point for an indicator with a K_a of 2.5×10^{-4}?

A. 1.00
B. 3.60
C. 7.00
D. 10.40
35. Which of the following describes the predominant reaction in a solution of \((\text{NH}_4)_2\text{SO}_4\) with respect to hydrolysis?

A. \((\text{NH}_4)_2\text{SO}_4\) (aq) ⇌ 2\text{NH}_4^+(aq) + \text{SO}_4^{2-}(aq)

B. \text{NH}_4^+(aq) + \text{H}_2\text{O}(\ell) ⇌ \text{H}_3\text{O}^+(aq) + \text{NH}_3(aq)

C. \text{SO}_4^{2-}(aq) + \text{H}_2\text{O}(\ell) ⇌ \text{HSO}_4^-(aq) + \text{OH}^-(aq)

D. No hydrolysis reaction occurs.

36. What is the pH of the solution formed when 0.085 moles NaOH is added to 1.00 L of 0.075 M HCl?

A. 2.00
B. 7.00
C. 12.00
D. 12.78

37. Which of the following graphs describes the relationship between the pH of a buffer and the volume of NaOH added to the buffer?

A. ![Graph A](image1)

B. ![Graph B](image2)

C. ![Graph C](image3)

D. ![Graph D](image4)
38. A gas which is produced by internal combustion engines and contributes to the formation of acid rain is
A. H_2
B. O_3
C. CH_4
D. NO_2

39. A substance that is oxidized
A. loses electrons and is a reducing agent.
B. gains electrons and is a reducing agent.
C. loses electrons and is an oxidizing agent.
D. gains electrons and is an oxidizing agent.

40. What is the oxidation number change for C when $C_6H_{12}O_6$ is converted to C_2H_5OH?
A. increase by 2
B. increase by 4
C. decrease by 2
D. decrease by 4

41. Consider the following redox equilibrium:
\[X_2 + Y^{2+} \rightleftharpoons 2X^- + Y^{4+} \]
\[K_{eq} = 6.2 \times 10^{-8} \]
Which is the strongest oxidizing agent?
A. X_2
B. X^-
C. Y^{4+}
D. Y^{2+}
42. Which of the following substances will react spontaneously?

A. Cu$^{2+}$ and Cl$^-$
B. Au(s) and Cl$^-$
C. Au$^{3+}$ and H$_2$O$_2$
D. Cu$^{2+}$ and H$_2$O$_2$

43. A titration of a FeSO$_4$ (aq) sample with acidified K$_2$Cr$_2$O$_7$ (aq) produced the following results:

<table>
<thead>
<tr>
<th>Volume of FeSO$_4$ sample</th>
<th>10.0 mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of K$_2$Cr$_2$O$_7$</td>
<td>0.278 M</td>
</tr>
<tr>
<td>Volume of acidified K$_2$Cr$_2$O$_7$</td>
<td>12.7 mL</td>
</tr>
</tbody>
</table>

The equation for the overall reaction is:

$$6\text{Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ \rightarrow 6\text{Fe}^{3+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O}$$

What is the [Fe$^{2+}$] in the sample?

A. 0.0212 M
B. 0.0588 M
C. 0.353 M
D. 2.12 M
Use the following electrochemical cell diagram to answer questions 44 and 45.

44. The reaction occurring at the cathode is

A. \(\text{Na}^+ + e^- \rightarrow \text{Na} \)
B. \(\text{Sn}^{2+} + 2e^- \rightarrow \text{Sn} \)
C. \(\text{NO}_3^- + 4\text{H}^+ + 3e^- \rightarrow \text{NO} (g) + 2\text{H}_2\text{O} \)
D. \(2\text{NO}_3^- + 4\text{H}^+ + 2e^- \rightarrow \text{N}_2\text{O}_4 (g) + 2\text{H}_2\text{O} \)

45. The cell potential at equilibrium is

A. 0.00 V
B. +0.94 V
C. +0.96 V
D. +1.10 V
46. Consider the following redox reactions and their corresponding cell potentials:

\[
3\text{Ce}^{4+} + \text{Au} \rightarrow 3\text{Ce}^{3+} + \text{Au}^{3+} \quad E^\circ = +0.11 \text{ V}
\]

\[
\text{Co}^{3+} + \text{Ce}^{3+} \rightarrow \text{Co}^{2+} + \text{Ce}^{4+} \quad E^\circ = +0.21 \text{ V}
\]

What is the reduction potential for \(\text{Co}^{3+} + e^- \rightarrow \text{Co}^{2+}\)?

A. +1.82 V
B. +1.18 V
C. +0.32 V
D. −0.10 V

47. During the corrosion of magnesium, the anode reaction is

A. \(\text{Mg} \rightarrow \text{Mg}^{2+} + 2e^-\)
B. \(\text{Mg}^{2+} + 2e^- \rightarrow \text{Mg}\)
C. \(4\text{OH}^- \rightarrow \text{O}_2 + 2\text{H}_2\text{O} + 4e^-\)
D. \(\text{O}_2 + 2\text{H}_2\text{O} + 4e^- \rightarrow 4\text{OH}^-\)

48. Why does the zinc coating on the inside of an iron soup can keep the iron from reacting with the soup?

A. Zinc is a weaker reducing agent than iron.
B. Zinc is a weaker oxidizing agent than iron.
C. Zinc is a stronger reducing agent than iron.
D. Zinc is a stronger oxidizing agent than iron.
49. The molten salt, ZnCl₂, undergoes electrolysis. The cathode reaction is

A. Zn → Zn²⁺ + 2e⁻
B. Zn²⁺ + 2e⁻ → Zn
C. Cl₂ + 2e⁻ → 2Cl⁻
D. 2Cl⁻ → Cl₂ + 2e⁻

50. A metal spoon is to be electroplated with silver using a DC power supply. Which of the following is correct?

<table>
<thead>
<tr>
<th>Spoon</th>
<th>Power supply connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. anode</td>
<td>positive terminal</td>
</tr>
<tr>
<td>B. cathode</td>
<td>positive terminal</td>
</tr>
<tr>
<td>C. anode</td>
<td>negative terminal</td>
</tr>
<tr>
<td>D. cathode</td>
<td>negative terminal</td>
</tr>
</tbody>
</table>

This is the end of the multiple-choice section.
Answer the remaining questions in the Response Booklet.