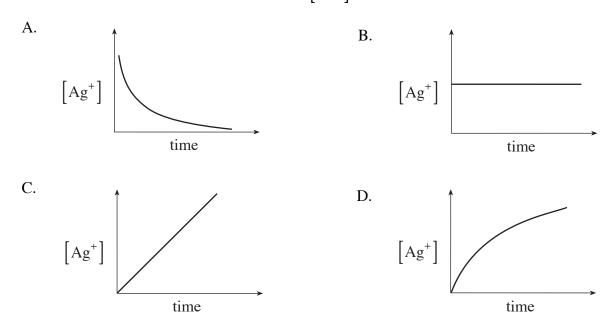
Chemistry 12

1. A saturated solution forms when a 0.10 mol of salt is added to 1.0 L of water. The salt is

A. Li₂S

- B. CuBr₂
- C. $Zn(OH)_2$
- D. $(NH_4)_2CO_3$
- 2. Consider the following equilibrium:


$$\operatorname{Ca(OH)}_{2(s)} \rightleftharpoons \operatorname{Ca}^{2+}_{(aq)} + 2\operatorname{OH}^{-}_{(aq)}$$

Adding which of the following could cause the equilibrium $[Ca^{2+}]$ to increase?

- A. $H_2O_{(\ell)}$
- B. HCl_(aq)
- C. KOH_(s)
- D. $Ca(OH)_{2(s)}$
- 3. Consider the following solubility equilibrium:

$$\operatorname{AgCl}_{(s)} \rightleftharpoons \operatorname{Ag}^{+}_{(aq)} + \operatorname{Cl}^{-}_{(aq)}$$

Which of the following graphs represents the $\left[Ag^{+}\right]$ after equilibrium has been established?

4. The concentrations of the cation and anion in $0.40 \text{ M} (\text{NH}_4)_2 \text{Cr}_2 \text{O}_{7(aq)}$ are

	Cation	Anion
A.	0.40 M	0.40 M
B.	0.40 M	0.80 M
C.	0.80 M	0.40 M
D.	0.80 M	0.80 M

Which of the following will produce a solution with the highest $\left[OH^{-} \right]$?

A. AgOH

5.

- B. $Sr(OH)_2$
- C. $Fe(OH)_3$
- D. Mg(OH)₂

6. When equal volumes of $0.20 \text{ M } \text{ZnSO}_4$ and 0.20 M SrS are combined

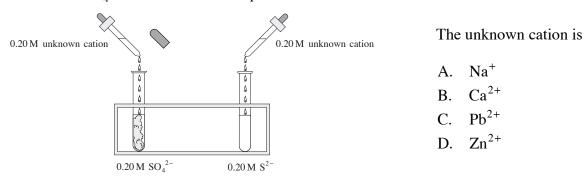
- A. a precipitate does not form.
- B. a precipitate of only ZnS forms.
- C. a precipitate of only SrSO₄ forms.
- D. precipitates of both ZnS and SrSO₄ form.
- 7. What is the concentration of Pb^{2+} in a saturated solution of $Pb(IO_3)_2$?
 - A. 9.0×10^{-5} M
 - B. 5.7×10^{-5} M
 - C. 4.5×10^{-5} M
 - $D. \quad 1.1\times 10^{-4}\ M$
- 8. Which of the following dissolves in water to form a molecular solution?
 - A. KCl
 - B. Na₂O
 - C. NH₄Br
 - D. C₂H₅OH
- 9. A saturated solution is formed by adding $10.0 \text{ g PbI}_{2(s)}$ to 10.0 mL of water in a beaker. Describe the situation which exists in the beaker. (1)
 - A. $\left[Pb^{2+} \right] = \left[I^{-} \right]$
 - B. moles $PbI_{2(s)} = moles Pb_{(aq)}^{2+}$
 - C. mass of $PbI_{2(s)}$ = mass of $PbI_{2(aq)}$
 - D. rate of crystalization = rate of dissociation

10. What is the concentration of barium ions in a 1.00 L solution containing 2.08 g of BaCl₂ ?

- A. $1.00 \times 10^{-2} \text{ M}$
- B. 1.21×10^{-2} M
- C. $2.00 \times 10^{-2} \text{ M}$
- D. 2.08 M

11. Which of the following salts has low solubility?

- A. MgS
- B. ZnCl₂
- C. SrSO₄
- D. AgNO₃
- 12. Consider the following solubility equilibrium:


$$\operatorname{AgCl}_{(s)} \rightleftharpoons \operatorname{Ag}^{+}_{(aq)} + \operatorname{Cl}^{-}_{(aq)}$$

Some $\operatorname{NaCl}_{(s)}$ is added to the equilibrium. When equilibrium is reestablished, how have the ion concentrations changed from the original equilibrium?

 \bigtriangledown

	$\left[Ag^{+}\right]$	[Cl ⁻]
A.	decreased	increased
В.	decreased	decreased
C.	increased	decreased
D.	increased	increased

13. A precipitate forms when a 0.20 M solution containing an unknown cation is added to $SO_4^{2^-}$, but not when an equal volume is added to S^{2^-} .

14. The K_{sp} expression for a saturated solution of $Ni_3(PO_4)_2$ is

A.
$$K_{sp} = [Ni^{2+}]^3 [PO_4^{3-}]^2$$

B. $K_{sp} = [Ni^{2+}]^2 [PO_4^{3-}]^3$
C. $K_{sp} = [3Ni^{2+}] [2PO_4^{3-}]$
D. $K_{sp} = [3Ni^{2+}]^3 [2PO_4^{3-}]^2$

15. Consider the following equilibrium:

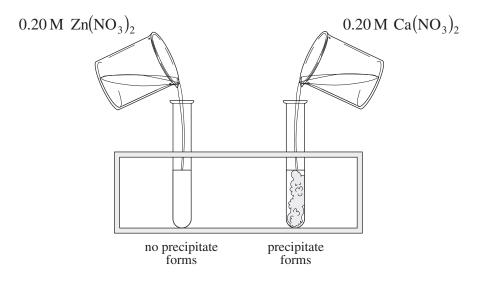

$$\operatorname{BaSO}_{4(s)} \rightleftharpoons \operatorname{Ba}_{(aq)}^{2+} + \operatorname{SO}_{4(aq)}^{2-}$$

Adding which of the following will cause more solid BaSO₄ to form?

- A. $CaCl_{2(s)}$
- B. $K_2CO_{3(s)}$
- C. $Na_2SO_{4(s)}$
- D. $Mg(NO_3)_{2(s)}$

16. Which of the following could **not** be used to represent solubility?

- A. g/mL
- B. mL/L
- C. mol/L
- D. g/min
- 17. The following three beakers each contain different volumes of a saturated solution of PbI_2 and different masses of solid PbI_2 :



What is the relationship for the $[Pb^{2+}]$ in the solution in the three beakers?

- A. I = II = III
- $B. \quad I > II > III$
- C. II > III > I
- D. III > II > I

A.
$$\operatorname{Ag_2CrO}_{4(s)} \rightleftharpoons \operatorname{Ag_2}_{(aq)}^{2+} + \operatorname{CrO}_{4}_{(aq)}^{2-}$$

B. $\operatorname{Ag_2CrO}_{4(s)} \rightleftharpoons 2\operatorname{Ag}_{(aq)}^{+} + \operatorname{CrO}_{4}_{(aq)}^{2-}$
C. $\operatorname{Ag_2CrO}_{4(s)} \rightleftharpoons 2\operatorname{Ag}_{(s)}^{+} + \operatorname{Cr}_{(s)}^{2-} + 2\operatorname{O}_{2(g)}$
D. $\operatorname{Ag_2CrO}_{4(s)} \rightleftharpoons 2\operatorname{Ag}_{(aq)}^{+} + \operatorname{Cr}_{(aq)}^{6+} + 4\operatorname{O}_{(aq)}^{2-}$

19. When 10.0 mL of $0.20 \text{ M Zn}(\text{NO}_3)_2$ is added to a 10.0 mL sample of 0.20 M unknown solution, no precipitate forms. When the same volume of $0.20 \text{ M Ca}(\text{NO}_3)_2$ is added to a separate 10.0 mL sample of the unknown solution, a precipitate does form. (2 marks)

The identity of the unknown solution could be

- A. NaCl
- B. Na₂S
- C. Na₂SO₄
- D. Na₂CO₃

20. The solubility of PbS is 1.8×10^{-14} M. The value of K_{sp} is

- A. 3.2×10^{-28}
- B. 1.8×10^{-14}
- C. 3.6×10^{-14}
- D. 1.3×10^{-7}

21. At 25°C, which of the following compounds has a low solubility when added to water?

- A. FeS
- B. CuCl₂
- C. ZnSO₄
- D. NH₄CH₃COO

22. Which of the following forms a molecular solution?

- A. KCl
- B. NaOH
- C. CH₃OH
- D. NH₄CH₃COO

23. List the compounds AgI, KBr and $MgCO_3$ in order of solubility from lowest to highest.

- A. AgI, MgCO₃, KBr
- B. KBr, AgI, MgCO₃
- C. KBr, MgCO₃, AgI
- D. MgCO₃, AgI, KBr
- 24. Consider the following K_{sp} expression:

$$\mathbf{K}_{sp} = \left[\mathbf{C}\mathbf{u}^{2+}\right] \left[\mathbf{IO}_{3}^{-}\right]^{2}$$

Which of the following does this equilibrium expression represent?

A. $\operatorname{CuIO}_{3(s)} \rightleftharpoons \operatorname{Cu}^{+}_{(aq)} + \operatorname{IO}_{3}^{-}_{(aq)}$ B. $\operatorname{CuIO}_{3(s)} \rightleftharpoons \operatorname{Cu}^{2+}_{(aq)} + \operatorname{IO}_{3}^{2-}_{(aq)}$ C. $\operatorname{CuIO}_{3(s)} \rightleftharpoons \operatorname{Cu}^{2+}_{(aq)} + \operatorname{IO}_{3}^{-}_{(aq)}$ D. $\operatorname{Cu}(\operatorname{IO}_{3})_{2(s)} \rightleftharpoons \operatorname{Cu}^{2+}_{(aq)} + 2\operatorname{IO}_{3}^{-}_{(aq)}$

25. The solubility of NiCO₃ is 3.8×10^{-4} mol/L. The K_{sp} value is

- A. 1.4×10^{-7} B. 3.8×10^{-4}
- C. 7.6×10^{-4}
- D. 1.9×10^{-2}

26. The $[Ag^+]$ in a saturated solution of AgBrO₃ is

- A. 2.8×10^{-9} M
- B. 2.6×10^{-5} M
- C. 5.3×10^{-5} M
- D. 7.3×10^{-3} M

- 27. When solutions of AgNO₃ and NaCl are combined, the Trial K_{sp} for AgCl is 5.6 × 10⁻¹¹. Predict what will be observed.
 - A. a precipitate will form because Trial $K_{sp} < K_{sp}$
 - B. a precipitate will form because Trial $K_{sp} > K_{sp}$
 - C. a precipitate will not form because Trial $K_{sp} < K_{sp}$
 - D. a precipitate will not form because Trial $K_{sp} > K_{sp}$
- 28. Calculate the maximum $[CO_3^{2^-}]$ that can exist in a solution without forming a precipitate when $[Mg^{2^+}] = 0.20 \text{ M}$.
 - A. $1.4 \times 10^{-6} \text{ M}$
 - B. 3.4×10^{-5} M
 - C. 2.6×10^{-3} M
 - D. $5.8 \times 10^{-3} \text{ M}$
- 29. In a saturated solution of $Ag_2C_2O_4$, the $[Ag^+] = 2.2 \times 10^{-4} M$. What is the solubility of $Ag_2C_2O_4$ in this solution?
 - A. $4.3 \times 10^{-11} \text{ M}$
 - B. 1.1×10^{-4} M
 - C. 2.2×10^{-4} M
 - D. 4.4×10^{-4} M
- 30. When equal volumes of 0.2 M solutions are mixed, which of the following combinations forms a precipitate?
 - A. CaS and $Sr(OH)_2$
 - B. H_2SO_4 and $MgCl_2$
 - C. $(NH_4)_2SO_4$ and K_2CO_3
 - D. H₂SO₃ and NaCH₃COO
- 31. A solution contains 0.2 M Zn^{2+} and 0.2 M Sr^{2+} . An equal volume of a second solution was added, forming a precipitate with Sr^{2+} but not with Zn^{2+} . What is present in the second solution?
 - A 0.2 M Cl^{-}
 - B. 0.2 M OH⁻
 - C. 0.2 M SO₄²⁻
 - D. 0.2 M PO_4^{3-}

A.
$$K_{sp} = [Ba^{2+}][AsO_4^{3-}]$$

B. $K_{sp} = [Ba^{2+}]^3[AsO_4^{3-}]^2$
C. $K_{sp} = [3Ba^{2+}][2AsO_4^{3-}]$
D. $K_{sp} = [3Ba^{2+}]^3[2AsO_4^{3-}]^2$

33. The solubility of NiCO₃ is 4.4×10^{-2} g/L . Determine the K_{sp} value of NiCO₃.

- A. 1.4×10^{-7}
- B. 3.7×10^{-4}
- C. 1.9×10^{-3}
- D. 2.1×10^{-1}

34. Calculate the solubility of $PbSO_4$.

- A. $3.2 \times 10^{-16} \text{ M}$
- B. 1.8×10^{-8} M
- C. 3.6×10^{-8} M
- D. 1.3×10^{-4} M

35. When a solution containing Ag^+ is mixed with a solution containing BrO_3^- , the trial ion product is determined to be 2.5×10^{-7} . What would be observed?

- A. A precipitate would form since trial ion product $< K_{sp}$.
- B. A precipitate would form since trial ion product $> K_{sp}$.
- C. A precipitate would not form since trial ion product $< K_{sp}$.
- D. A precipitate would not form since trial ion product $> K_{sp}$.

36. Which of the following will dissolve in water to form an ionic solution?

- A. O₂
- B. CH₄
- C. NH₄Cl
- D. CH₃OH

37. The solubility of $SrCO_3$ is 2.4×10^{-5} M. How many moles of dissolved solute are present in 100.0 mL of saturated $SrCO_3$ solution?

- A. 5.6×10^{-10} mol
- B. 2.4×10^{-6} mol
- C. 2.4×10^{-5} mol
- D. 2.4×10^{-4} mol

	$\left[Cu^{2+}\right]$	[Cl ⁻]
A.	0.10 M	0.20 M
B.	0.20 M	0.10 M
C.	0.30 M	0.30 M
D.	0.30 M	0.60 M

39.

What is the net ionic equation for the reaction that occurs when equal volumes of $0.20 \text{ M Ba}(\text{NO}_3)_2$ and $0.20 \text{ M Na}_2\text{SO}_4$ are mixed together?

A.
$$Ba_{(aq)}^{2+} + SO_{4(aq)}^{2-} \rightarrow BaSO_{4(s)}$$

B. $Na_{(aq)}^{+} + NO_{3(aq)}^{-} \rightarrow NaNO_{3(s)}$
C. $Ba(NO_{3})_{2(aq)} + Na_{2}SO_{4(aq)} \rightarrow BaSO_{4(s)} + 2NaNO_{3(aq)}$
D. $Ba_{(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2Na_{(aq)}^{+} + SO_{4(aq)}^{2-} \rightarrow BaSO_{4(s)} + 2Na_{(aq)}^{+} + 2NO_{3(aq)}^{-}$

(

40. Consider the following equilibrium:

$$\operatorname{AgIO}_{3(s)} \rightleftharpoons \operatorname{Ag}^{+}_{(aq)} + \operatorname{IO}^{-}_{3(aq)}$$

A few crystals of $NaIO_3$ are added to the above equilibrium. When equilibrium is re-established, how do the new ion concentrations compare with the original equilibrium concentrations?

	[Ag ⁺]	$\left[\mathrm{IO_3}^-\right]$
A.	decreased	decreased
B.	decreased	increased
C.	increased	decreased
D.	increased	increased

41. The K_{sp} expression for $Zn(OH)_2$ is

A.
$$K_{sp} = [Zn^{2+}][OH^{-}]^{2}$$

B. $K_{sp} = [Zn^{2+}]^{2}[OH^{-}]$
C. $K_{sp} = [Zn^{2+}][2OH^{-}]$
D. $K_{sp} = [Zn^{2+}][2OH^{-}]^{2}$

42. The solubility of CdCO₃ is 2.5×10^{-6} M . Calculate the K_{sp} value for CdCO₃.

- A. 6.3×10^{-12}
- B. 2.5×10^{-6}
- C. 5.0×10^{-6}
- D. 1.6×10^{-3}

43. At 25°C, what is the $[Cl^-]$ in a saturated solution of PbCl₂?

- A. $1.4 \times 10^{-2} \text{ M}$
- B. 2.3×10^{-2} M
- C. $2.9 \times 10^{-2} \text{ M}$
- D. 4.6×10^{-2} M
- 44. In every solubility equilibrium, the rate of dissolving is
 - A. equal to zero.
 - B. equal to the rate of crystallization.
 - C. less than the rate of crystallization.
 - D. greater than the rate of crystallization.
- 45. A 3.0 L solution of $BaCl_2$ has a chloride ion concentration of 0.20 M. The barium ion concentration in this solution is
 - A. 0.067 M
 - B. 0.10 M
 - C. 0.20 M
 - D. 0.60 M

46. Which of the following has the lowest solubility?

- A. CaS
- B. CuS
- C. FeS
- D. MgS
- 47. What is the formula equation for the reaction that occurs when equal volumes of $0.20 \text{ M K}_3\text{PO}_4$ and 0.20 M ZnCl_2 are mixed together?

A.
$$K^+_{(aq)} + Cl^-_{(aq)} \rightarrow KCl_{(s)}$$

B. $3Zn^{2+}_{(aq)} + 2PO^{3-}_{4(aq)} \rightarrow Zn_3(PO_4)_{2(s)}$

C.
$$2K_3PO_{4(aq)} + 3ZnCl_{2(aq)} \rightarrow Zn_3(PO_4)_{2(s)} + 6KCl_{(aq)}$$

D. $2K_3PO_{4(aq)} + 3ZnCl_{2(aq)} \rightarrow 3Zn_3(PO_4)_{2(aq)} + 6KCl_{(s)}$

48. Which of the following could be added to a sample of hard water to remove both 0.2 M Ca^{2+} and 0.2 M Mg^{2+} ?

- A. 0.2 M S^{2-}
- B. 0.2 M Cl⁻
- C. 0.2 M OH^-
- D. 0.2 M SO₄²⁻

49. The K_{sp} expression for a saturated solution of Ag_2SO_3 is

A. $K_{sp} = [2Ag^{+}][SO_{3}^{2-}]$ B. $K_{sp} = [Ag^{+}]^{2}[SO_{3}^{2-}]$ C. $K_{sp} = [Ag_{2}^{2+}][SO_{3}^{2-}]$ D. $K_{sp} = [2Ag^{+}]^{2}[SO_{3}^{2-}]$

50. The solubility of CaF₂ is 3.3×10^{-4} M. Determine the K_{sp} value of CaF₂.

- A. 3.6×10^{-11}
- B. 1.4×10^{-10}
- C. 1.1×10^{-7}
- D. 3.3×10^{-4}

51. What is the maximum $[Ag^+]$ that can exist in a solution of 0.010 M NaIO₃?

A. 3.2×10^{-10} M B. 3.2×10^{-8} M C. 3.2×10^{-6} M D. 1.8×10^{-4} M

52. Which of the following could be used to express solubility?

- A. mol
- B. M/s
- C. g/mL
- D. mL/min

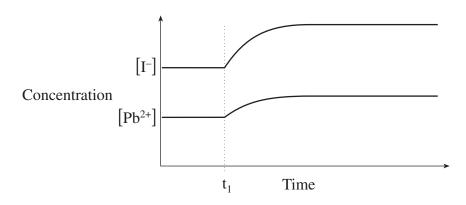
53. When 100.0 mL of a saturated solution of BaF_2 is heated and all the water is evaporated, 3.6×10^{-4} mol of solute remains. The solubility of BaF_2 is

A. $1.9 \times 10^{-10} \text{ M}$ B. $1.3 \times 10^{-5} \text{ M}$ C. $3.6 \times 10^{-4} \text{ M}$ D. $3.6 \times 10^{-3} \text{ M}$

- 54. A solution contains both 0.2 M $Mg^{2+}_{(aq)}$ and 0.2 M $Sr^{2+}_{(aq)}$. These ions can be removed separately through precipitation by adding equal volumes of 0.2 M solutions of
 - A. OH^{-} , and then S^{2-}
 - B. Cl⁻, and then OH⁻
 - C. CO_3^{2-} , and then SO_3^{2-}
 - D. SO_4^{2-} , and then PO_4^{3-}
- 55. Consider the following equilibrium:

$$\operatorname{CaSO}_{4(s)} \rightleftharpoons \operatorname{Ca}^{2+}_{(aq)} + \operatorname{SO}_{4(aq)}^{2-}_{(aq)}$$

Which of the following would shift the above equilibrium to the left?


- A. adding $CaSO_{4(s)}$
- B. adding MgSO_{4(s)}
- C. removing some $Ca^{2+}_{(aq)}$
- D. removing some $SO_{4(aq)}^{2-}$
- 56. Calculate the solubility of CaC_2O_4 .
 - A. $2.3 \times 10^{-9} \,\mathrm{M}$
 - B. 1.2×10^{-5} M
 - C. 4.8×10^{-5} M
 - D. $8.3 \times 10^{-4} \,\mathrm{M}$
- 57. How many moles of dissolved solute are present in 100.0 mL of a saturated SrCO₃ solution?
 - A. 5.6×10^{-11} mol
 - B. 2.4×10^{-6} mol
 - C. 2.4×10^{-5} mol
 - D. 2.4×10^{-4} mol
- 58. What happens when equal volumes of 0.2 M AgNO₃ and 0.2 M NaCl are combined?
 - A. A precipitate forms because the trial ion product $> K_{sp}$
 - B. A precipitate forms because the trial ion product $< K_{sp}$
 - C. No precipitate forms because the trial ion product > K_{sp}
 - D. No precipitate forms because the trial ion product $< K_{sp}$

59. Determine the maximum $[Na_2CO_3]$ that can exist in 1.0 L of 0.0010 M Ba $(NO_3)_2$ without forming a precipitate.

A. 2.6×10^{-12} M B. 2.6×10^{-9} M C. 2.6×10^{-6} M D. 5.1×10^{-5} M

60. Solid $Ba(OH)_2$ is added to water to prepare a saturated solution. Which of the following is true for this equilibrium system?

- A. [anion] = [cation]
- B. trial K_{sp} is less than K_{sp}
- C. blue litmus paper would turn red
- D. the rate of dissolving = the rate of crystallization
- 61. A saturated solution of PbI_2 was subjected to a stress and the following graph was obtained.

Which stress was applied at time t_1 ?

- A. the addition of PbI_2
- B. a temperature change
- C. an increase in volume
- D. the evaporation of water

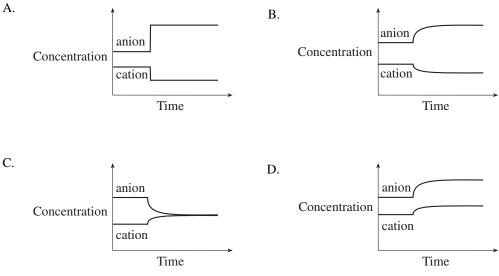
62. Which of the following would be true when equal volumes of 0.2 M NaBr and 0.2 M AgNO₃ are combined?

- A. No precipitate forms.
- B. A precipitate of AgBr forms.
- C. A precipitate of NaNO₃ forms.
- D. Precipitates of both NaNO₃ and AgBr form.

- 63. Using the solubility table, determine which of the following ions could **not** be used to separate S^{2-} from SO_4^{2-} by precipitation?
 - A. Be²⁺
 - B. Ca²⁺
 - C. Ba²⁺
 - D. Sr²⁺
- 64. Which of the following is true when solid Na_2S is added to a saturated solution of CuS and equilibrium is reestablished?
 - A. $[S^{2-}]$ increases.
 - B. $\left[Cu^{2+} \right]$ increases.
 - C. $[S^{2-}]$ does not change.
 - D. $\left[Cu^{2+} \right]$ does not change.
- 65. Which of the following describes the relationship between the solubility product constant (K_{sp}) and the solubility (s) of PbI₂?
 - A. $K_{sp} = s^2$
 - B. $K_{sp} = 4s^3$
 - C. $s = \frac{\sqrt[3]{K_{sp}}}{4}$
 - D. $s = \sqrt{K_{sp}}$

66. Which of the following saturated solutions will have the lowest $[S^{2-}]$?

- A. BaS
- B. CaS
- C. CuS
- D. ZnS


67. What is the solubility of SrF_2 ?

A. 3.2×10^{-25} M

- B. $1.8 \times 10^{-17} \,\mathrm{M}$
- C. 4.3×10^{-9} M
- D. $1.0 \times 10^{-3} \text{ M}$

68. Which of the following is a suitable term for representing solubility?

- A. grams
- B. moles
- C. molarity
- D. millilitres per second
- 69. A saturated solution is prepared by dissolving a salt in water. Which of the following graphs could represent the ion concentrations as the temperature is changed?

- A. 0.050 M
- B. 0.10 M
- C. 0.20 M
- D. 0.40 M
- 71. What happens when 10.0 mL of 0.2 M KOH is added to 10.0 mL of 0.2 M CuSO₄ ?
 - A. No precipitate forms.
 - B. A precipitate of K_2SO_4 forms.
 - C. A precipitate of $Cu(OH)_2$ forms.
 - D. Precipitates of K_2SO_4 and $Cu(OH)_2$ form.
- 72. Solid NaCl is added to a saturated AgCl solution. How have the $[Ag^+]$ and $[Cl^-]$ changed when equilibrium has been reestablished?

	$\left[Ag^{+}\right]$	$\left[\mathrm{Cl}^{-} \right]$
A.	increased	increased
В.	decreased	increased
C.	increased	decreased
D.	decreased	decreased
D.	decreased	decreased

73. Which of the following expressions represents $[Fe^{3+}]$ in a saturated $Fe(OH)_3$ solution?

A.
$$\frac{K_{sp}}{3[OH^{-}]}$$

B.
$$\frac{K_{sp}}{[OH^{-}]^{3}}$$

C.
$$\sqrt[3]{\frac{K_{sp}}{[OH^{-}]}}$$

D. $K_{sp} \times [OH^{-}]^{3}$

74. What is the value of K_{sp} for $Zn(OH)_2$ if the solubility of $Zn(OH)_2$ is equal to 4.2×10^{-6} M ?

- A. 1.0×10^{-2}
- B. 4.0×10^{-3}
- C. 1.8×10^{-11}
- D. 3.0×10^{-16}
- 75. What is the maximum number of moles of Cl^- that can exist in 500.0 mL of 2.0 M AgNO₃?
 - A. 4.5×10^{-11}
 - B. 9.0×10^{-11}
 - C. 1.8×10^{-10}
 - D. 1.8×10^{-9}
- 76. What is the concentration of the ions in 3.0 L of 0.50 M $Al_2(SO_4)_3$?

	$\left[\mathrm{Al}^{3+}\right]$	$\left[\mathrm{SO_4}^{2-}\right]$
A.	0.33 M	0.50 M
B.	1.0 M	1.5 M
C.	1.5 M	1.5 M
D.	3.0 M	4.5 M

77. Consider the following equilibrium:

$$MgCO_{3(s)} \rightleftharpoons Mg^{2+}_{(aq)} + CO_{3(aq)}^{2-}$$

Adding which of the following would cause the solid to dissolve?

A. HCl

- B. K₂CO₃
- C. MgCO₃
- D. $Mg(NO_3)_2$

Which of the following compounds could be used to prepare a solution with a $[S^{2-}]$ greater than 0.1M ?

A. ZnS

78.

- B. PbS
- C. Ag₂S
- D. Rb₂S
- 79. Which of the following will **not** form a precipitate when mixed with an equal volume of 0.2 M AgNO_3 ?
 - A. 0.2 M NaBr
 - B. 0.2 M NaIO₃
 - C. 0.2 M NaNO₃
 - D. 0.2 M NaBrO₃
- 80. A solution is prepared containing both 0.2 M OH^- and 0.2 M PO_4^{3-} ions. An equal volume of a second solution is added in order to precipitate only one of these two anions. The second solution must contain which of the following?
 - A. 0.2 M Cs^+
 - B. $0.2 \text{ M } \text{Zn}^{2+}$
 - C. 0.2 M Pb^{2+}
 - D. 0.2 M Sr^{2+}
- 81. Consider the following equilibrium:

$$\operatorname{CaS}_{(s)} \rightleftharpoons \operatorname{Ca}^{2+}_{(aq)} + \operatorname{S}^{2-}_{(aq)}$$

When $Ca(NO_3)_{2(aq)}$ is added to this solution, the equilibrium shifts to the

- A. left and $[S^{2-}]$ increases. B. left and $[S^{2-}]$ decreases. C. right and $[S^{2-}]$ increases.
- D. right and $[S^{2-}]$ decreases.

- 82. How many moles of Pb^{2+} are there in 500.0 mL of a saturated solution of $PbSO_4$?
 - A. 3.2×10^{-16}
 - B. 9.0×10^{-9}
 - C. 6.7×10^{-5}
 - D. 1.3×10^{-4}
- 83. Which of the following compounds is least soluble in water?
 - A. CuI
 - B. BeS
 - C. CsOH
 - D. AgBrO₃
- 84. Which of the following will dissolve to form a molecular solution?
 - A. H_2SO_4
 - B. AgNO₃
 - C. Ca(OH)₂
 - D. C₆H₁₂O₆
- 85. Consider the following equilibrium:

energy + $\operatorname{AgCl}_{(s)} \rightleftharpoons \operatorname{Ag}^{+}_{(aq)} + \operatorname{Cl}^{-}_{(aq)}$

Addition of which of the following will increase the solubility of AgCl ?

- A. heat
- B. HCl
- C. AgNO₃
- D. a catalyst
- 86. What is the $[Cl^-]$ when 15.0 g of NaCl is dissolved in enough water to make 100.0 mL of solution?
 - A. 0.150 M
 B. 0.390 M
 C. 2.56 M
 D. 3.90 M