1. A saturated solution forms when a 0.10 mol of salt is added to 1.0 L of water. The salt is
A. $\mathrm{Li}_{2} \mathrm{~S}$
B. CuBr_{2}
C. $\mathrm{Zn}(\mathrm{OH})_{2}$
D. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$
2. Consider the following equilibrium:

$$
\mathrm{Ca}(\mathrm{OH})_{2(s)} \rightleftarrows \mathrm{Ca}_{(a q)}^{2+}+2 \mathrm{OH}_{(a q)}^{-}
$$

Adding which of the following could cause the equilibrium $\left[\mathrm{Ca}^{2+}\right]$ to increase?
A. $\mathrm{H}_{2} \mathrm{O}_{(\ell)}$
B. $\mathrm{HCl}_{(a q)}$
C. $\mathrm{KOH}_{(s)}$
D. $\mathrm{Ca}(\mathrm{OH})_{2(s)}$
3. Consider the following solubility equilibrium:

$$
\mathrm{AgCl}_{(s)} \rightleftarrows \mathrm{Ag}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-}
$$

Which of the following graphs represents the $\left\lfloor\mathrm{Ag}^{+}\right\rfloor$after equilibrium has been established?
A.

B.

C.

D.

4. The concentrations of the cation and anion in $0.40 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}$ are

	Cation	Anion
A.	0.40 M	0.40 M
B.	0.40 M	0.80 M
C.	0.80 M	0.40 M
D.	0.80 M	0.80 M

5. Which of the following will produce a solution with the highest $\left[\mathrm{OH}^{-}\right]$?
A. AgOH
B. $\mathrm{Sr}(\mathrm{OH})_{2}$
C. $\mathrm{Fe}(\mathrm{OH})_{3}$
D. $\mathrm{Mg}(\mathrm{OH})_{2}$
6. When equal volumes of $0.20 \mathrm{M} \mathrm{ZnSO}_{4}$ and 0.20 M SrS are combined
A. a precipitate does not form.
B. a precipitate of only ZnS forms.
C. a precipitate of only SrSO_{4} forms.
D. precipitates of both ZnS and SrSO_{4} form.
7. What is the concentration of Pb^{2+} in a saturated solution of $\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$?
A. $\quad 9.0 \times 10^{-5} \mathrm{M}$
B. $5.7 \times 10^{-5} \mathrm{M}$
C. $4.5 \times 10^{-5} \mathrm{M}$
D. $1.1 \times 10^{-4} \mathrm{M}$
8. Which of the following dissolves in water to form a molecular solution?
A. KCl
B. $\mathrm{Na}_{2} \mathrm{O}$
C. $\mathrm{NH}_{4} \mathrm{Br}$
D. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
9. A saturated solution is formed by adding $10.0 \mathrm{~g} \mathrm{PbI}_{2(s)}$ to 10.0 mL of water in a beaker. Describe the situation which exists in the beaker.
A. $\left[\mathrm{Pb}^{2+}\right]=\left[\mathrm{I}^{-}\right]$
B. moles $\mathrm{PbI}_{2(s)}=$ moles $\mathrm{Pb}_{(a q)}^{2+}$
C. mass of $\mathrm{PbI}_{2(s)}=$ mass of $\mathrm{PbI}_{2(a q)}$
D. rate of crystalization = rate of dissociation
10. What is the concentration of barium ions in a 1.00 L solution containing 2.08 g of BaCl_{2} ?
A. $1.00 \times 10^{-2} \mathrm{M}$
B. $1.21 \times 10^{-2} \mathrm{M}$
C. $2.00 \times 10^{-2} \mathrm{M}$
D. 2.08 M
11. Which of the following salts has low solubility?
A. MgS
B. ZnCl_{2}
C. SrSO_{4}
D. AgNO_{3}
12. Consider the following solubility equilibrium:

$$
\mathrm{AgCl}_{(s)} \rightleftarrows \mathrm{Ag}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-}
$$

Some $\mathrm{NaCl}_{(s)}$ is added to the equilibrium. When equilibrium is reestablished, how have the ion concentrations changed from the original equilibrium?
A.

$\left[\mathrm{Ag}^{+}\right]$	$\left[\mathrm{Cl}^{-}\right]$
decreased	increased
decreased	decreased
increased	decreased
increased	increased

13. A precipitate forms when a 0.20 M solution containing an unknown cation is added to $\mathrm{SO}_{4}{ }^{2-}$, but not when an equal volume is added to S^{2-}.

The unknown cation is
A. Na^{+}
B. Ca^{2+}
C. Pb^{2+}
D. Zn^{2+}
14. The $\mathrm{K}_{s p}$ expression for a saturated solution of $\mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is
A. $\mathrm{K}_{s p}=\left[\mathrm{Ni}^{2+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]^{2}$
B. $\mathrm{K}_{s p}=\left[\mathrm{Ni}^{2+}\right]^{2}\left[\mathrm{PO}_{4}{ }^{3-}\right]^{3}$
C. $\mathrm{K}_{s p}=\left[3 \mathrm{Ni}^{2+}\right]\left[2 \mathrm{PO}_{4}^{3-}\right]$
D. $\mathrm{K}_{s p}=\left[3 \mathrm{Ni}^{2+}\right]^{3}\left[2 \mathrm{PO}_{4}^{3-}\right]^{2}$
15. Consider the following equilibrium:

$$
\mathrm{BaSO}_{4(s)} \rightleftarrows \mathrm{Ba}_{(a q)}^{2+}+\mathrm{SO}_{4}^{2-} \underset{(a q)}{2-}
$$

Adding which of the following will cause more solid BaSO_{4} to form?
A. $\mathrm{CaCl}_{2(s)}$
B. $\mathrm{K}_{2} \mathrm{CO}_{3(s)}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4(s)}$
D. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2(s)}$
16. Which of the following could not be used to represent solubility?
A. g / mL
B. mL / L
C. $\mathrm{mol} / \mathrm{L}$
D. $\mathrm{g} / \mathrm{min}$
17. The following three beakers each contain different volumes of a saturated solution of PbI_{2} and different masses of solid PbI_{2} :

Beaker II

Beaker III

What is the relationship for the $\left[\mathrm{Pb}^{2+}\right]$ in the solution in the three beakers?
A. $\mathrm{I}=\mathrm{II}=\mathrm{III}$
B. I $>$ II $>$ III
C. $\mathrm{II}>$ III $>$ I
D. III $>$ II $>$ I
18. The equation that describes the solubility equilibrium of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ is
A. $\quad \mathrm{Ag}_{2} \mathrm{CrO}_{4(s)} \rightleftarrows \mathrm{Ag}_{2}{ }_{(a q)}^{2+}+\mathrm{CrO}_{4}{ }_{(a q)}^{2-}$
B. $\quad \mathrm{Ag}_{2} \mathrm{CrO}_{4(s)} \rightleftarrows 2 \mathrm{Ag}^{+}{ }_{(a q)}+\mathrm{CrO}_{4}{ }_{(a q)}^{2-}$
C. $\mathrm{Ag}_{2} \mathrm{CrO}_{4(s)} \rightleftarrows 2 \mathrm{Ag}_{(s)}+\mathrm{Cr}_{(s)}+2 \mathrm{O}_{2(g)}$
D. $\mathrm{Ag}_{2} \mathrm{CrO}_{4(s)} \rightleftarrows 2 \mathrm{Ag}_{(a q)}^{+}+\mathrm{Cr}_{(a q)}^{6+}+4 \mathrm{O}_{(a q)}^{2-}$
19. When 10.0 mL of $0.20 \mathrm{M} \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ is added to a 10.0 mL sample of 0.20 M unknown solution, no precipitate forms. When the same volume of $0.20 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is added to a separate 10.0 mL sample of the unknown solution, a precipitate does form.
(2 marks)

The identity of the unknown solution could be
A. NaCl
B. $\mathrm{Na}_{2} \mathrm{~S}$
C. $\mathrm{Na}_{2} \mathrm{SO}_{4}$
D. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
20. The solubility of PbS is $1.8 \times 10^{-14} \mathrm{M}$. The value of $\mathrm{K}_{s p}$ is
A. 3.2×10^{-28}
B. 1.8×10^{-14}
C. 3.6×10^{-14}
D. 1.3×10^{-7}
21. At $25^{\circ} \mathrm{C}$, which of the following compounds has a low solubility when added to water?
A. FeS
B. CuCl_{2}
C. ZnSO_{4}
D. $\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}$
22. Which of the following forms a molecular solution?
A. KCl
B. NaOH
C. $\mathrm{CH}_{3} \mathrm{OH}$
D. $\mathrm{NH}_{4} \mathrm{CH}_{3} \mathrm{COO}$
23. List the compounds $\mathrm{AgI}, \mathrm{KBr}$ and MgCO_{3} in order of solubility from lowest to highest.
A. $\mathrm{AgI}, \mathrm{MgCO}_{3}, \mathrm{KBr}$
B. $\mathrm{KBr}, \mathrm{AgI}, \mathrm{MgCO}_{3}$
C. $\mathrm{KBr}, \mathrm{MgCO}_{3}, \mathrm{AgI}$
D. $\mathrm{MgCO}_{3}, \mathrm{AgI}, \mathrm{KBr}$
24. Consider the following $\mathrm{K}_{s p}$ expression:

$$
\mathrm{K}_{s p}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2}
$$

Which of the following does this equilibrium expression represent?
A. $\mathrm{CuIO}_{3(s)} \rightleftarrows \mathrm{Cu}^{+}{ }_{(a q)}+\mathrm{IO}_{3}^{-}{ }_{(a q)}$
B. $\mathrm{CuIO}_{3(s)} \rightleftarrows \mathrm{Cu}_{(a q)}^{2+}+\mathrm{IO}_{3}{ }_{(a q)}^{2-}$
C. $\mathrm{CuIO}_{3(s)} \rightleftarrows \mathrm{Cu}_{(a q)}^{2+}+\mathrm{IO}_{3_{(a q)}^{-}}^{-}$
D. $\quad \mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2(s)} \rightleftarrows \mathrm{Cu}_{(a q)}^{2+}+2 \mathrm{IO}_{3}^{-}{ }_{(a q)}$
25. The solubility of NiCO_{3} is $3.8 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$. The $\mathrm{K}_{s p}$ value is
A. 1.4×10^{-7}
B. 3.8×10^{-4}
C. 7.6×10^{-4}
D. 1.9×10^{-2}
26. The $\left[\mathrm{Ag}^{+}\right]$in a saturated solution of AgBrO_{3} is
A. $2.8 \times 10^{-9} \mathrm{M}$
B. $2.6 \times 10^{-5} \mathrm{M}$
C. $\quad 5.3 \times 10^{-5} \mathrm{M}$
D. $7.3 \times 10^{-3} \mathrm{M}$
27. When solutions of AgNO_{3} and NaCl are combined, the Trial $\mathrm{K}_{s p}$ for AgCl is 5.6×10^{-11}. Predict what will be observed.
A. a precipitate will form because Trial $\mathrm{K}_{s p}<\mathrm{K}_{s p}$
B. a precipitate will form because Trial $\mathrm{K}_{s p}>\mathrm{K}_{s p}$
C. a precipitate will not form because Trial $\mathrm{K}_{s p}<\mathrm{K}_{s p}$
D. a precipitate will not form because Trial $\mathrm{K}_{s p}>\mathrm{K}_{s p}$
28. Calculate the maximum $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ that can exist in a solution without forming a precipitate when $\left[\mathrm{Mg}^{2+}\right]=0.20 \mathrm{M}$.
A. $1.4 \times 10^{-6} \mathrm{M}$
B. $3.4 \times 10^{-5} \mathrm{M}$
C. $2.6 \times 10^{-3} \mathrm{M}$
D. $5.8 \times 10^{-3} \mathrm{M}$
29. In a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, the $\left[\mathrm{Ag}^{+}\right]=2.2 \times 10^{-4} \mathrm{M}$.

What is the solubility of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in this solution?
A. $4.3 \times 10^{-11} \mathrm{M}$
B. $1.1 \times 10^{-4} \mathrm{M}$
C. $2.2 \times 10^{-4} \mathrm{M}$
D. $4.4 \times 10^{-4} \mathrm{M}$
30. When equal volumes of 0.2 M solutions are mixed, which of the following combinations forms a precipitate?
A. CaS and $\mathrm{Sr}(\mathrm{OH})_{2}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and MgCl_{2}
C. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$
D. $\mathrm{H}_{2} \mathrm{SO}_{3}$ and $\mathrm{NaCH}_{3} \mathrm{COO}$
31. A solution contains $0.2 \mathrm{M} \mathrm{Zn}^{2+}$ and $0.2 \mathrm{M} \mathrm{Sr}^{2+}$. An equal volume of a second solution was added, forming a precipitate with Sr^{2+} but not with Zn^{2+}. What is present in the second solution?

A $\quad 0.2 \mathrm{M} \mathrm{Cl}^{-}$
B. $0.2 \mathrm{M} \mathrm{OH}^{-}$
C. $0.2 \mathrm{M} \mathrm{SO}_{4}^{2-}$
D. $0.2 \mathrm{M} \mathrm{PO}_{4}^{3-}$
32. The $\mathrm{K}_{s p}$ expression for a saturated solution of $\mathrm{Ba}_{3}\left(\mathrm{AsO}_{4}\right)_{2}$ is
A. $\mathrm{K}_{s p}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{AsO}_{4}^{3-}\right]$
B. $\mathrm{K}_{s p}=\left[\mathrm{Ba}^{2+}\right]^{3}\left[\mathrm{AsO}_{4}^{3-}\right]^{2}$
C. $\mathrm{K}_{s p}=\left[3 \mathrm{Ba}^{2+}\right]\left[2 \mathrm{AsO}_{4}{ }^{3-}\right]$
D. $\mathrm{K}_{s p}=\left[3 \mathrm{Ba}^{2+}\right]^{3}\left[2 \mathrm{AsO}_{4}^{3-}\right]^{2}$
33. The solubility of NiCO_{3} is $4.4 \times 10^{-2} \mathrm{~g} / \mathrm{L}$. Determine the $\mathrm{K}_{s p}$ value of NiCO_{3}.
A. 1.4×10^{-7}
B. 3.7×10^{-4}
C. 1.9×10^{-3}
D. 2.1×10^{-1}
34. Calculate the solubility of PbSO_{4}.
A. $\quad 3.2 \times 10^{-16} \mathrm{M}$
B. $1.8 \times 10^{-8} \mathrm{M}$
C. $3.6 \times 10^{-8} \mathrm{M}$
D. $1.3 \times 10^{-4} \mathrm{M}$
35. When a solution containing Ag^{+}is mixed with a solution containing $\mathrm{BrO}_{3}{ }^{-}$, the trial ion product is determined to be 2.5×10^{-7}. What would be observed?
A. A precipitate would form since trial ion product $<\mathrm{K}_{s p}$.
B. A precipitate would form since trial ion product $>\mathrm{K}_{s p}$.
C. A precipitate would not form since trial ion product $<\mathrm{K}_{s p}$.
D. A precipitate would not form since trial ion product $>\mathrm{K}_{s p}$.
36. Which of the following will dissolve in water to form an ionic solution?
A. O_{2}
B. CH_{4}
C. $\mathrm{NH}_{4} \mathrm{Cl}$
D. $\mathrm{CH}_{3} \mathrm{OH}$
37. The solubility of SrCO_{3} is $2.4 \times 10^{-5} \mathrm{M}$. How many moles of dissolved solute are present in 100.0 mL of saturated SrCO_{3} solution?
A. $5.6 \times 10^{-10} \mathrm{~mol}$
B. $2.4 \times 10^{-6} \mathrm{~mol}$
C. $2.4 \times 10^{-5} \mathrm{~mol}$
D. $2.4 \times 10^{-4} \mathrm{~mol}$
38. What are the ion concentrations in $0.30 \mathrm{M} \mathrm{CuCl}_{2}$?
A.

$\left[\mathrm{Cu}^{2+}\right]$	$\left[\mathrm{Cl}^{-}\right]$
0.10 M	0.20 M
0.20 M	0.10 M
0.30 M	0.30 M
0.30 M	0.60 M

39. What is the net ionic equation for the reaction that occurs when equal volumes of $0.20 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ and $0.20 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ are mixed together?
A. $\quad \mathrm{Ba}_{(a q)}^{2+}+\mathrm{SO}_{4}{ }_{(a q)}^{2-} \rightarrow \mathrm{BaSO}_{4(s)}$
B. $\mathrm{Na}^{+}{ }_{(a q)}+\mathrm{NO}_{3}^{-}{ }_{(a q)} \rightarrow \mathrm{NaNO}_{3(s)}$
C. $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(a q)}+\mathrm{Na}_{2} \mathrm{SO}_{4(a q)} \rightarrow \mathrm{BaSO}_{4(s)}+2 \mathrm{NaNO}_{3(a q)}$
D. $\mathrm{Ba}_{(a q)}^{2+}+2 \mathrm{NO}_{3}^{-}{ }_{(a q)}+2 \mathrm{Na}^{+}{ }_{(a q)}+\mathrm{SO}_{4}^{2-}(a q) \rightarrow \mathrm{BaSO}_{4(s)}+2 \mathrm{Na}^{+}{ }_{(a q)}+2 \mathrm{NO}_{3}{ }_{(a q)}^{-}$
40. Consider the following equilibrium:

$$
\mathrm{AgIO}_{3(s)} \rightleftarrows \mathrm{Ag}_{(a q)}^{+}+\mathrm{IO}_{3(a q)}^{-}
$$

A few crystals of NaIO_{3} are added to the above equilibrium. When equilibrium is re-established, how do the new ion concentrations compare with the original equilibrium concentrations?
A.

$\left[\mathrm{Ag}^{+}\right]$	$\left[\mathrm{IO}_{3}^{-}\right]$
decreased	decreased
decreased	increased
increased	decreased
increased	increased

41. The $\mathrm{K}_{s p}$ expression for $\mathrm{Zn}(\mathrm{OH})_{2}$ is
A. $\mathrm{K}_{s p}=\left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
B. $\mathrm{K}_{s p}=\left[\mathrm{Zn}^{2+}\right]^{2}\left[\mathrm{OH}^{-}\right]$
C. $\mathrm{K}_{s p}=\left[\mathrm{Zn}^{2+}\right]\left[2 \mathrm{OH}^{-}\right]$
D. $\mathrm{K}_{s p}=\left[\mathrm{Zn}^{2+}\right]\left[2 \mathrm{OH}^{-}\right]^{2}$
42. The solubility of CdCO_{3} is $2.5 \times 10^{-6} \mathrm{M}$. Calculate the $\mathrm{K}_{s p}$ value for CdCO_{3}.
A. 6.3×10^{-12}
B. 2.5×10^{-6}
C. 5.0×10^{-6}
D. 1.6×10^{-3}
43. At $25^{\circ} \mathrm{C}$, what is the $\left[\mathrm{Cl}^{-}\right]$in a saturated solution of PbCl_{2} ?
A. $1.4 \times 10^{-2} \mathrm{M}$
B. $2.3 \times 10^{-2} \mathrm{M}$
C. $2.9 \times 10^{-2} \mathrm{M}$
D. $4.6 \times 10^{-2} \mathrm{M}$
44. In every solubility equilibrium, the rate of dissolving is
A. equal to zero.
B. equal to the rate of crystallization.
C. less than the rate of crystallization.
D. greater than the rate of crystallization.
45. A 3.0 L solution of BaCl_{2} has a chloride ion concentration of 0.20 M . The barium ion concentration in this solution is
A. $\quad 0.067 \mathrm{M}$
B. 0.10 M
C. 0.20 M
D. 0.60 M
46. Which of the following has the lowest solubility?
A. CaS
B. CuS
C. FeS
D. MgS
47. What is the formula equation for the reaction that occurs when equal volumes of $0.20 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}$ and 0.20 M ZnCl 2 are mixed together?
A. $\quad \mathrm{K}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-} \rightarrow \mathrm{KCl}_{(s)}$
B. $\quad 3 \mathrm{Zn}_{(a q)}^{2+}+2 \mathrm{PO}_{4}{ }_{(a q)}^{3-} \rightarrow \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}$
C. $2 \mathrm{~K}_{3} \mathrm{PO}_{4(a q)}+3 \mathrm{ZnCl}_{2(a q)} \rightarrow \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)}+6 \mathrm{KCl}_{(a q)}$
D. $2 \mathrm{~K}_{3} \mathrm{PO}_{4(a q)}+3 \mathrm{ZnCl}_{2(a q)} \rightarrow 3 \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2(a q)}+6 \mathrm{KCl}_{(s)}$
48. Which of the following could be added to a sample of hard water to remove both $0.2 \mathrm{M} \mathrm{Ca}^{2+}$ and $0.2 \mathrm{M} \mathrm{Mg}^{2+}$?
A. $\quad 0.2 \mathrm{M} \mathrm{S}^{2-}$
B. $0.2 \mathrm{M} \mathrm{Cl}^{-}$
C. $0.2 \mathrm{M} \mathrm{OH}^{-}$
D. $0.2 \mathrm{M} \mathrm{SO}_{4}^{2-}$
49. The $\mathrm{K}_{s p}$ expression for a saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{3}$ is
A. $\mathrm{K}_{s p}=\left[2 \mathrm{Ag}^{+}\right]\left[\mathrm{SO}_{3}{ }^{2-}\right]$
B. $\mathrm{K}_{s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{3}{ }^{2-}\right]$
C. $\mathrm{K}_{s p}=\left[\mathrm{Ag}_{2}{ }^{2+}\right]\left[\mathrm{SO}_{3}{ }^{2-}\right]$
D. $\mathrm{K}_{s p}=\left[2 \mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{3}{ }^{2-}\right]$
50. The solubility of CaF_{2} is $3.3 \times 10^{-4} \mathrm{M}$. Determine the $\mathrm{K}_{s p}$ value of CaF_{2}.
A. 3.6×10^{-11}
B. 1.4×10^{-10}
C. 1.1×10^{-7}
D. 3.3×10^{-4}
51. What is the maximum $\left[\mathrm{Ag}^{+}\right]$that can exist in a solution of 0.010 M NaIO 3 ?
A. $\quad 3.2 \times 10^{-10} \mathrm{M}$
B. $3.2 \times 10^{-8} \mathrm{M}$
C. $3.2 \times 10^{-6} \mathrm{M}$
D. $1.8 \times 10^{-4} \mathrm{M}$
52. Which of the following could be used to express solubility?
A. mol
B. M / s
C. g / mL
D. $\mathrm{mL} / \mathrm{min}$
53. When 100.0 mL of a saturated solution of BaF_{2} is heated and all the water is evaporated, $3.6 \times 10^{-4} \mathrm{~mol}$ of solute remains. The solubility of BaF_{2} is
A. $\quad 1.9 \times 10^{-10} \mathrm{M}$
B. $\quad 1.3 \times 10^{-5} \mathrm{M}$
C. $3.6 \times 10^{-4} \mathrm{M}$
D. $3.6 \times 10^{-3} \mathrm{M}$
54. A solution contains both $0.2 \mathrm{M} \mathrm{Mg}_{(a q)}^{2+}$ and $0.2 \mathrm{M} \mathrm{Sr}_{(a q)}^{2+}$. These ions can be removed separately through precipitation by adding equal volumes of 0.2 M solutions of
A. OH^{-}, and then S^{2-}
B. Cl^{-}, and then OH^{-}
C. $\mathrm{CO}_{3}{ }^{2-}$, and then $\mathrm{SO}_{3}{ }^{2-}$
D. $\mathrm{SO}_{4}{ }^{2-}$, and then PO_{4}^{3-}
55. Consider the following equilibrium:

$$
\mathrm{CaSO}_{4(s)} \rightleftarrows \mathrm{Ca}_{(a q)}^{2+}+\mathrm{SO}_{4}^{2-} \stackrel{-a q)}{2-}
$$

Which of the following would shift the above equilibrium to the left?
A. adding $\mathrm{CaSO}_{4(s)}$
B. adding $\mathrm{MgSO}_{4(s)}$
C. removing some $\mathrm{Ca}^{2+}{ }_{(a q)}$
D. removing some $\mathrm{SO}_{4}{ }_{(a q)}^{2-}$
56. Calculate the solubility of $\mathrm{CaC}_{2} \mathrm{O}_{4}$.
A. $2.3 \times 10^{-9} \mathrm{M}$
B. $1.2 \times 10^{-5} \mathrm{M}$
C. $4.8 \times 10^{-5} \mathrm{M}$
D. $8.3 \times 10^{-4} \mathrm{M}$
57. How many moles of dissolved solute are present in 100.0 mL of a saturated SrCO_{3} solution?
A. $5.6 \times 10^{-11} \mathrm{~mol}$
B. $2.4 \times 10^{-6} \mathrm{~mol}$
C. $2.4 \times 10^{-5} \mathrm{~mol}$
D. $2.4 \times 10^{-4} \mathrm{~mol}$
58. What happens when equal volumes of $0.2 \mathrm{M} \mathrm{AgNO}_{3}$ and 0.2 M NaCl are combined?
A. A precipitate forms because the trial ion product $>\mathrm{K}_{s p}$
B. A precipitate forms because the trial ion product $<\mathrm{K}_{s p}$
C. No precipitate forms because the trial ion product $>\mathrm{K}_{s p}$
D. No precipitate forms because the trial ion product $<\mathrm{K}_{s p}$
59. Determine the maximum $\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]$ that can exist in 1.0 L of $0.0010 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ without forming a precipitate.
A. $2.6 \times 10^{-12} \mathrm{M}$
B. $2.6 \times 10^{-9} \mathrm{M}$
C. $2.6 \times 10^{-6} \mathrm{M}$
D. $5.1 \times 10^{-5} \mathrm{M}$
60. Solid $\mathrm{Ba}(\mathrm{OH})_{2}$ is added to water to prepare a saturated solution.

Which of the following is true for this equilibrium system?
A. $\quad[$ anion $]=[$ cation $]$
B. trial $\mathrm{K}_{s p}$ is less than $\mathrm{K}_{s p}$
C. blue litmus paper would turn red
D. the rate of dissolving $=$ the rate of crystallization
61. A saturated solution of PbI_{2} was subjected to a stress and the following graph was obtained.

Which stress was applied at time t_{1} ?
A. the addition of PbI_{2}
B. a temperature change
C. an increase in volume
D. the evaporation of water
62. Which of the following would be true when equal volumes of 0.2 M NaBr and $0.2 \mathrm{M} \mathrm{AgNO}_{3}$ are combined?
A. No precipitate forms.
B. A precipitate of AgBr forms.
C. A precipitate of NaNO_{3} forms.
D. Precipitates of both NaNO_{3} and AgBr form.
63. Using the solubility table, determine which of the following ions could not be used to separate S^{2-} from $\mathrm{SO}_{4}{ }^{2-}$ by precipitation?
A. Be^{2+}
B. Ca^{2+}
C. Ba^{2+}
D. Sr^{2+}
64. Which of the following is true when solid $\mathrm{Na}_{2} \mathrm{~S}$ is added to a saturated solution of CuS and equilibrium is reestablished?
A. $\left[\mathrm{S}^{2-}\right]$ increases.
B. $\left[\mathrm{Cu}^{2+}\right]$ increases.
C. $\left[\mathrm{S}^{2-}\right]$ does not change.
D. $\left[\mathrm{Cu}^{2+}\right]$ does not change.
65. Which of the following describes the relationship between the solubility product constant $\left(\mathrm{K}_{s p}\right)$ and the solubility (s) of PbI_{2} ?
A. $\mathrm{K}_{s p}=s^{2}$
B. $\mathrm{K}_{s p}=4 s^{3}$
C. $s=\frac{\sqrt[3]{\mathrm{K}_{s p}}}{4}$
D. $s=\sqrt{\mathrm{K}_{s p}}$
66. Which of the following saturated solutions will have the lowest $\left[\mathrm{S}^{2-}\right]$?
A. BaS
B. CaS
C. CuS
D. ZnS
67. What is the solubility of SrF_{2} ?
A. $\quad 3.2 \times 10^{-25} \mathrm{M}$
B. $1.8 \times 10^{-17} \mathrm{M}$
C. $4.3 \times 10^{-9} \mathrm{M}$
D. $1.0 \times 10^{-3} \mathrm{M}$
68. Which of the following is a suitable term for representing solubility?
A. grams
B. moles
C. molarity
D. millilitres per second
69. A saturated solution is prepared by dissolving a salt in water. Which of the following graphs could represent the ion concentrations as the temperature is changed?
A.

B.

C.

D.

70. What is the concentration of OH^{-}ions in 250 mL of $0.20 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$?
A. $\quad 0.050 \mathrm{M}$
B. 0.10 M
C. 0.20 M
D. 0.40 M
71. What happens when 10.0 mL of 0.2 M KOH is added to 10.0 mL of $0.2 \mathrm{M} \mathrm{CuSO}_{4}$?
A. No precipitate forms.
B. A precipitate of $\mathrm{K}_{2} \mathrm{SO}_{4}$ forms.
C. A precipitate of $\mathrm{Cu}(\mathrm{OH})_{2}$ forms.
D. Precipitates of $\mathrm{K}_{2} \mathrm{SO}_{4}$ and $\mathrm{Cu}(\mathrm{OH})_{2}$ form.
72. Solid NaCl is added to a saturated AgCl solution. How have the $\left[\mathrm{Ag}^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$ changed when equilibrium has been reestablished?

$\left[\mathrm{Ag}^{+}\right]$	$\left[\mathrm{Cl}^{-}\right]$
increased	increased
decreased	increased
increased	decreased
decreased	decreased

73. Which of the following expressions represents $\left[\mathrm{Fe}^{3+}\right]$ in a saturated $\mathrm{Fe}(\mathrm{OH})_{3}$ solution?
A. $\frac{\mathrm{K}_{s p}}{3\left[\mathrm{OH}^{-}\right]}$
B. $\frac{\mathrm{K}_{s p}}{\left[\mathrm{OH}^{-}\right]^{3}}$
C. $\sqrt[3]{\frac{\mathrm{K}_{s p}}{\left[\mathrm{OH}^{-}\right]}}$
D. $\mathrm{K}_{s p} \times\left[\mathrm{OH}^{-}\right]^{3}$
74. What is the value of $\mathrm{K}_{s p}$ for $\mathrm{Zn}(\mathrm{OH})_{2}$ if the solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ is equal to $4.2 \times 10^{-6} \mathrm{M}$?
A. 1.0×10^{-2}
B. 4.0×10^{-3}
C. 1.8×10^{-11}
D. 3.0×10^{-16}
75. What is the maximum number of moles of Cl^{-}that can exist in 500.0 mL of $2.0 \mathrm{M} \mathrm{AgNO}_{3}$?
A. 4.5×10^{-11}
B. 9.0×10^{-11}
C. 1.8×10^{-10}
D. 1.8×10^{-9}
76. What is the concentration of the ions in 3.0 L of $0.50 \mathrm{M} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?

	$\left[\mathrm{Al}^{3+}\right]$	$\left[\mathrm{SO}_{4}{ }^{2-}\right]$
A.	0.33 M	0.50 M
B.	1.0 M	1.5 M
C.	1.5 M	1.5 M
D.	3.0 M	4.5 M

77. Consider the following equilibrium:

$$
\mathrm{MgCO}_{3(s)} \rightleftarrows \mathrm{Mg}_{(a q)}^{2+}+\mathrm{CO}_{3_{(a q)}}^{2-}
$$

Adding which of the following would cause the solid to dissolve?
A. HCl
B. $\mathrm{K}_{2} \mathrm{CO}_{3}$
C. MgCO_{3}
D. $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
78. Which of the following compounds could be used to prepare a solution with a $\left[\mathrm{S}^{2-}\right]$ greater than 0.1 M ?
A. ZnS
B. PbS
C. $\mathrm{Ag}_{2} \mathrm{~S}$
D. $R b_{2} S$
79. Which of the following will not form a precipitate when mixed with an equal volume of $0.2 \mathrm{M} \mathrm{AgNO}_{3}$?
A. $\quad 0.2 \mathrm{M} \mathrm{NaBr}$
B. $\quad 0.2 \mathrm{M} \mathrm{NaIO}_{3}$
C. $0.2 \mathrm{M} \mathrm{NaNO}_{3}$
D. $0.2 \mathrm{M} \mathrm{NaBrO}_{3}$
80. A solution is prepared containing both $0.2 \mathrm{M} \mathrm{OH}^{-}$and $0.2 \mathrm{M} \mathrm{PO}_{4}{ }^{3-}$ ions. An equal volume of a second solution is added in order to precipitate only one of these two anions. The second solution must contain which of the following?
A. $0.2 \mathrm{M} \mathrm{Cs}^{+}$
B. $0.2 \mathrm{M} \mathrm{Zn}^{2+}$
C. $0.2 \mathrm{M} \mathrm{Pb}^{2+}$
D. $0.2 \mathrm{M} \mathrm{Sr}^{2+}$
81. Consider the following equilibrium:

$$
\mathrm{CaS}_{(s)} \rightleftarrows \mathrm{Ca}_{(a q)}^{2+}+\mathrm{S}_{(a q)}^{2-}
$$

When $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(a q)}$ is added to this solution, the equilibrium shifts to the
A. left and $\left[\mathrm{S}^{2-}\right]$ increases.
B. left and $\left[\mathrm{S}^{2-}\right]$ decreases.
C. right and $\left[\mathrm{S}^{2-}\right]$ increases.
D. right and $\left[\mathrm{S}^{2-}\right]$ decreases.
82. How many moles of Pb^{2+} are there in 500.0 mL of a saturated solution of PbSO_{4} ?
A. $\quad 3.2 \times 10^{-16}$
B. 9.0×10^{-9}
C. 6.7×10^{-5}
D. 1.3×10^{-4}
83. Which of the following compounds is least soluble in water?
A. CuI
B. BeS
C. CsOH
D. AgBrO_{3}
84. Which of the following will dissolve to form a molecular solution?
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. AgNO_{3}
C. $\mathrm{Ca}(\mathrm{OH})_{2}$
D. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
85. Consider the following equilibrium:

$$
\text { energy }+\mathrm{AgCl}_{(s)} \rightleftarrows \mathrm{Ag}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-}
$$

Addition of which of the following will increase the solubility of AgCl ?
A. heat
B. HCl
C. AgNO_{3}
D. a catalyst
86. What is the $\left[\mathrm{Cl}^{-}\right]$when 15.0 g of NaCl is dissolved in enough water to make 100.0 mL of solution?
A. 0.150 M
B. 0.390 M
C. 2.56 M
D. 3.90 M

