87. An equal number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is added to four different 10.0 mL samples.

| Sample 1 | Sample 2 | Sample 3 | Sample 4 |
| :---: | :---: | :---: | :---: |
| $0.50 \mathrm{M} \mathrm{Ba}_{(a q)}^{2+}$ | $0.50 \mathrm{M} \mathrm{Ca}_{(a q)}^{2+}$ | $0.50 \mathrm{M} \mathrm{Mg}_{(a q)}^{2+}$ | $0.50 \mathrm{M} \mathrm{Sr}_{(a q)}^{2+}$ |

A precipitate forms in only one of the samples. Identify the cation which is present in the precipitate.
A. $\mathrm{Ba}^{2+}$
B. $\mathrm{Ca}^{2+}$
C. $\mathrm{Mg}^{2+}$
D. $\mathrm{Sr}^{2+}$
88. What is the net ionic equation for the reaction between $\mathrm{BaS}_{(a q)}$ and $\operatorname{Sr}(\mathrm{OH})_{2(a q)}$ ?
A. $\mathrm{Sr}_{(a q)}^{2+}+\mathrm{S}_{(a q)}^{2-} \rightarrow \mathrm{SrS}_{(s)}$
B. $\mathrm{Ba}_{(a q)}^{2+}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2(s)}$
C. $\mathrm{Ba}_{(a q)}^{2+}+\mathrm{S}_{(a q)}^{2-}+\mathrm{Sr}_{(a q)}^{2+}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2(s)}+\mathrm{SrS}_{(s)}$
D. $\mathrm{Ba}_{(a q)}^{2+}+\mathrm{S}_{(a q)}^{2-}+\mathrm{Sr}_{(a q)}^{2+}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{Ba}(\mathrm{OH})_{2(s)}+\mathrm{Sr}_{(a q)}^{2+}+\mathrm{S}_{(a q)}^{2-}$
89. In which of the following would $\mathrm{PbCl}_{2(s)}$ be least soluble?
A. 1 M HCl
B. $1 \mathrm{M} \mathrm{BaCl}_{2}$
C. $1 \mathrm{M} \mathrm{K}_{2} \mathrm{SO}_{4}$
D. $1 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
90. The solubility of $\mathrm{ZnCO}_{3}$ is $6.4 \times 10^{-9} \mathrm{M}$. What is the value of $\mathrm{K}_{s p}$ for $\mathrm{ZnCO}_{3}$ ?
A. $4.1 \times 10^{-17}$
B. $6.4 \times 10^{-9}$
C. $1.3 \times 10^{-8}$
D. $8.0 \times 10^{-5}$
91. When equal volumes of 0.20 M NaOH and 0.20 M CaS are mixed together,
A. a precipitate forms and the Trial $\mathrm{K}_{s p}$ would be less than $\mathrm{K}_{s p}$.
B. no precipitate forms and the Trial $\mathrm{K}_{s p}$ would be less than $\mathrm{K}_{s p}$.
C. a precipitate forms and the Trial $\mathrm{K}_{s p}$ would be greater than $\mathrm{K}_{s p}$.
D. no precipitate forms and the Trial $\mathrm{K}_{s p}$ would be greater than $\mathrm{K}_{s p}$.
92. Which of the following solutes will produce a molecular solution?
A. HCl
B. $\mathrm{Fe}_{3} \mathrm{~S}_{3}$
C. $\mathrm{HNO}_{3}$
D. $\mathrm{CH}_{3} \mathrm{OH}$
93. Which of the following would best describe the solubility of a solute?
A. litres per gram
B. moles per litre
C. grams per mole
D. moles per second
94. Which compound will have the lowest solubility?
A. FeS
B. $\mathrm{CaSO}_{4}$
C. $\mathrm{AgBrO}_{3}$
D. $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
95. Which of the following precipitates may form when equal volumes of $0.3 \mathrm{M} \mathrm{AgNO}_{3}, 0.3 \mathrm{M} \mathrm{SrCl}_{2}$ and $0.3 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ are mixed together?
A. $\mathrm{SrCO}_{3}$ and AgCl
B. $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ and AgCl
C. $\mathrm{SrCO}_{3}$ and $\mathrm{Ag}_{2} \mathrm{CO}_{3}$
D. $\mathrm{SrCO}_{3}, \mathrm{Ag}_{2} \mathrm{CO}_{3}$ and AgCl
96. An experiment is conducted to identify an unknown cation that is present in each of four beakers.


Which of the following could be the unknown cation?
A. $\mathrm{Ag}^{+}$
B. $\mathrm{Fe}^{+3}$
C. $\mathrm{Ba}^{+2}$
D. $\mathrm{Be}^{+2}$
97.

Given the equilibrium reaction:

$$
2 \mathrm{NaNO}_{3(a q)}+\mathrm{Ag}_{2} \mathrm{~S}_{(s)} \rightleftarrows 2 \mathrm{AgNO}_{3(a q)}+\mathrm{Na}_{2} \mathrm{~S}_{(a q)}
$$

Which $\mathrm{K}_{s p}$ expression best describes the net ionic reaction?
A. $\mathrm{K}_{s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]$
B. $\mathrm{K}_{s p}=\frac{1}{\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]}$
C. $\mathrm{K}_{s p}=\frac{\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\left[\mathrm{Ag}_{2} \mathrm{~S}\right]}$
D. $\mathrm{K}_{s p}=\frac{\left[\mathrm{AgNO}_{3}\right]^{2}\left[\mathrm{Na}_{2} \mathrm{~S}\right]}{\left[\mathrm{NaNO}_{3}\right]^{2}}$
98. Two salt solutions were mixed and a Trial $\mathrm{K}_{s p}$ was calculated to be $2.0 \times 10^{-9}$. The $\mathrm{K}_{s p}$ value is $1.0 \times 10^{-10}$. From this information, which of the following is a true statement?

|  | $\mathrm{K}_{s p}$ comparison | Outcome |
| :--- | :---: | :---: |
| A. | Trial $\mathrm{K}_{s p}<\mathrm{K}_{s p}$ | precipitate forms |
| B. | Trial $\mathrm{K}_{s p}>\mathrm{K}_{s p}$ | precipitate forms |
| C. | Trial $\mathrm{K}_{s p}<\mathrm{K}_{s p}$ | no precipitate forms |
| D. | Trial $\mathrm{K}_{s p}>\mathrm{K}_{s p}$ | no precipitate forms |
|  |  |  |

99. A saturated solution of $\mathrm{SrSO}_{4}$ has a $\left[\mathrm{SO}_{4}^{2-}\right]$ of $1.0 \times 10^{-4} \mathrm{M}$.

What is the $\left[\mathrm{Sr}^{2+}\right]$ ?
A. $3.4 \times 10^{-3} \mathrm{M}$
B. $5.8 \times 10^{-4} \mathrm{M}$
C. $1.0 \times 10^{-4} \mathrm{M}$
D. $3.4 \times 10^{-7} \mathrm{M}$
100. Which of the following would form a saturated solution when 0.010 mol of the solid solute is added to 100 mL of water?
A. $\mathrm{BaCO}_{3}$
B. $\mathrm{FeSO}_{4}$
C. NaCN
D. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
101. Which net ionic equation best describes the reaction that exists in a solution prepared by mixing equal volumes of $0.20 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and $0.20 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ ?
A. $\mathrm{Ca}_{(a q)}^{2+}+\mathrm{CO}_{3(a q)}^{2-} \rightleftarrows \mathrm{CaCO}_{3(s)}$
B. $\quad \mathrm{Na}^{+}{ }_{(a q)}+\mathrm{NO}_{3}^{-}{ }_{(a q)} \rightleftarrows \mathrm{NaNO}_{3(s)}$
C. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(a q)}+\mathrm{Na}_{2} \mathrm{CO}_{3(a q)} \underset{ }{\rightleftarrows} 2 \mathrm{NaNO}_{3(s)}+\mathrm{CaCO}_{3(s)}$
D. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(a q)}+\mathrm{Na}_{2} \mathrm{CO}_{3(a q)} \rightleftarrows 2 \mathrm{NaNO}_{3(a q)}+\mathrm{CaCO}_{3(s)}$
102. Which compound will have the greatest solubility in water?
A. CuCl
B. $\mathrm{FeCO}_{3}$
C. $\mathrm{MgSO}_{4}$
D. $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
103. Which cation below can be used to separate $\mathrm{SO}_{4}{ }^{2-}$ from $\mathrm{S}^{2-}$ ions by precipitation?
A. $\mathrm{Sr}^{2+}$
B. $\mathrm{Pb}^{2+}$
C. $\mathrm{Cs}^{+}$
D. $\mathrm{Be}^{2+}$
104. What will be the effect of adding some solid $\mathrm{AgNO}_{3}$ to a saturated solution of AgCl ?
A. The $\mathrm{AgNO}_{3}$ will not dissolve.
B. More solid AgCl will dissolve.
C. More solid AgCl will be produced.
D. The $\mathrm{AgNO}_{3}$ will not affect the AgCl equilibrium.
105. For a saturated solution, the $\mathrm{K}_{s p}$ expression does not contain any solid solute term. What is the reason for this?
A. The solid solute is a product.
B. The solid solute is a reactant.
C. The solid solute continues to change in amount.
D. The solid solute does not change in concentration.
106. Which of the statements below describes the $\mathrm{K}_{s p}$ expression for the salt barium phosphate?
A. $\mathrm{K}_{s p}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{PO}_{4}^{3-}\right]$
B. $\mathrm{K}_{s p}=\left[\mathrm{Ba}^{2+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]^{2}$
C. $\mathrm{K}_{s p}=\left[3 \mathrm{Ba}^{2+}\right]\left[2 \mathrm{PO}_{4}^{3-}\right]$
D. $\mathrm{K}_{s p}=\left[3 \mathrm{Ba}^{2+}\right]^{3}\left[2 \mathrm{PO}_{4}^{3-}\right]^{2}$
107. What is the solubility of $\mathrm{Fe}(\mathrm{OH})_{2}$ ?
A. $\quad 4.9 \times 10^{-17} \mathrm{M}$
B. $1.2 \times 10^{-17} \mathrm{M}$
C. $3.7 \times 10^{-6} \mathrm{M}$
D. $2.3 \times 10^{-6} \mathrm{M}$
108. Which of the following ions would have the highest concentration in $0.1 \mathrm{M} \mathrm{CO}_{3}{ }^{2-}$ ?
A. $\mathrm{Ba}^{2+}$
B. $\mathrm{Ca}^{2+}$
C. $\mathrm{Sr}^{2+}$
D. $\mathrm{Mg}^{2+}$
109. Which of the solutes below can form an ionic solution with the highest conductivity?
A. PbS
B. $\mathrm{CH}_{3} \mathrm{Cl}$
C. $\mathrm{NaNO}_{3}$
D. $\mathrm{CH}_{3} \mathrm{COOH}$
110. The following data was collected to determine the solubility of a substance:

| Mass of solute dissolved | 5.00 g |
| :--- | :--- |
| Volume of solvent | 250.0 mL |
| Molar mass of solute | $100.0 \mathrm{~g} / \mathrm{mol}$ |
| Molar mass of solvent | $20.0 \mathrm{~g} / \mathrm{mol}$ |

Which of the following best describes its solubility?
A. $2.00 \times 10^{-2} \mathrm{~g} / \mathrm{mL}$
B. $5.00 \times 10^{-2} \mathrm{~mol}$
C. 0.250 mol
D. $1.00 \mathrm{~mol} / \mathrm{L}$
111. Which value best represents the total ion concentration when 0.10 moles of $\mathrm{K}_{3} \mathrm{PO}_{4}$ is present in 0.5 L of solution?
A. $\quad 0.1 \mathrm{M}$
B. $\quad 0.2 \mathrm{M}$
C. 0.4 M
D. 0.8 M
112. What will happen when equal volumes of $0.20 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$ and $0.20 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$ are mixed?
A. SrS precipitates.
B. $\mathrm{NH}_{4} \mathrm{OH}$ precipitates.
C. Both $\mathrm{NH}_{4} \mathrm{OH}$ and SrS precipitate.
D. No precipitate forms.
113. Which anion would be most effective in removing the cations responsible for hard water?
A. $S^{2-}$
B. $\mathrm{Cl}^{-}$
C. $\mathrm{PO}_{4}^{3-}$
D. $\mathrm{SO}_{4}{ }^{2-}$
114. Which of the following is the $\mathrm{K}_{s p}$ expression for barium phosphate?
A. $\mathrm{K}_{s p}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{PO}_{4}^{3-}\right]$
B. $\mathrm{K}_{s p}=\left[\mathrm{Ba}^{2+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]^{2}$
C. $\mathrm{K}_{s p}=\left[3 \mathrm{Ba}^{2+}\right]\left[2 \mathrm{PO}_{4}^{3-}\right]$
D. $\mathrm{K}_{s p}=\left[3 \mathrm{Ba}^{2+}\right]^{3}\left[2 \mathrm{PO}_{4}{ }^{3-}\right]^{2}$
115. The solubility of $\mathrm{Mg}(\mathrm{OH})_{2}$ is found to be $1.2 \times 10^{-4} \mathrm{M}$. What is its $\mathrm{K}_{s p}$ ?
A. $6.9 \times 10^{-12}$
B. $1.7 \times 10^{-12}$
C. $1.4 \times 10^{-8}$
D. $1.2 \times 10^{-4}$
116. Which of the following is true for the salt $\mathrm{SrF}_{2}$ at $25^{\circ} \mathrm{C}$ ?
A. It has a high solubility.
B. It will not dissolve at all.
C. Its solubility is $1.6 \times 10^{-3} \mathrm{M}$.
D. Its solubility is $1.0 \times 10^{-3} \mathrm{M}$.
117. Which of the following ions could be used in the lowest concentration to remove $\mathrm{Ag}^{+}$ions from a polluted water sample?
A. $\mathrm{I}^{-}$
B. $\mathrm{Br}^{-}$
C. $\mathrm{BrO}_{3}{ }^{-}$
D. $\mathrm{CO}_{3}{ }^{2-}$
118. Which of the solutes below is both ionic and most soluble?
A. RbOH
B. $\mathrm{CH}_{3} \mathrm{OH}$
C. $\mathrm{Ca}(\mathrm{OH})_{2}$
D. $\mathrm{Fe}(\mathrm{OH})_{3}$
119. Which of the following is commonly used to describe the solubility of a solute?
A. mass of solute/moles of solute
B. moles of solution/mass of solute
C. mass of solute/volume of solution
D. mass of solution/volume of solute
120. Given a saturated solution of $\mathrm{Ca}(\mathrm{OH})_{2}$ which of the following statements is always true?
A. The $\left[\mathrm{Ca}^{2+}\right]$ is twice that of $\left[\mathrm{OH}^{-}\right]$.
B. The $\mathrm{OH}^{-}$precipitates half as fast as the $\mathrm{Ca}^{2+}$.
C. The rate of crystallization equals the rate of dissolving.
D. The rate of dissolving is greater than the rate of crystallization.
121. What happens when equal volumes of $0.20 \mathrm{M} \mathrm{BaCl}_{2}$ and $0.20 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ are mixed?
A. Only $\mathrm{PbCl}_{2}$ precipitates.
B. Only $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ precipitates.
C. Both $\mathrm{PbCl}_{2}$ and $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ precipitate.
D. No precipitate forms.
122. Which of the following best represents the net ionic reaction resulting from the mixing of equal volumes of $0.2 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ and 0.2 M NaOH ?
A. $\mathrm{Ca}_{(a q)}^{2+}+2 \mathrm{OH}^{-}(a q) \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(s)}$
B. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(a q)}+2 \mathrm{NaOH}_{(a q)} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(s)}+2 \mathrm{NaNO}_{3(a q)}$
C. $\mathrm{Ca}_{(a q)}^{2+}+2 \mathrm{NO}_{3}^{-}{ }_{(a q)}+2 \mathrm{Na}^{+}{ }_{(a q)}+2 \mathrm{OH}_{(a q)}^{-} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(s)}+2 \mathrm{NaNO}_{3(a q)}$
D. $\mathrm{Ca}^{2+}{ }_{(a q)}+2 \mathrm{NO}_{3}{ }_{(a q)}+2 \mathrm{Na}^{+}{ }_{(a q)}+2 \mathrm{OH}^{-}{ }_{(a q)} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2(s)}+2 \mathrm{Na}^{+}{ }_{(a q)}+2 \mathrm{NO}_{3}{ }_{(a q)}^{-}$
123. What is the $\mathrm{K}_{s p}$ expression for the precipitate formed when solutions of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ and $\mathrm{Sr}(\mathrm{OH})_{2}$ are mixed?
A. $\mathrm{K}_{s p}=\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
B. $\mathrm{K}_{s p}=\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}$
C. $\mathrm{K}_{s p}=\left[\mathrm{Sr}^{2+}\right]\left[2 \mathrm{NO}_{3}{ }^{-}\right]$
D. $\mathrm{K}_{s p}=\left[\mathrm{Fe}^{3+}\right]\left[3 \mathrm{OH}^{-}\right]$
124. At some temperature greater than $25^{\circ} \mathrm{C}$, the $\mathrm{K}_{s p}$ for lead(II) sulphate becomes $1.0 \times 10^{-7}$. What is the solubility of the lead(II) sulphate at this temperature?
A. $\quad 1.0 \times 10^{-14} \mathrm{M}$
B. $5.0 \times 10^{-8} \mathrm{M}$
C. $2.0 \times 10^{-7} \mathrm{M}$
D. $3.2 \times 10^{-4} \mathrm{M}$
125. What is the maximum $\left[\mathrm{Pb}^{2+}\right]$ possible in a 0.10 M NaCl solution?
A. $\quad 1.2 \times 10^{-5} \mathrm{M}$
B. $\quad 6.0 \times 10^{-5} \mathrm{M}$
C. $\quad 1.2 \times 10^{-3} \mathrm{M}$
D. $\quad 3.0 \times 10^{-3} \mathrm{M}$
126. Which of the ions below could be used in a precipitation reaction to determine the $\left[\mathrm{SO}_{4}{ }^{2-}\right]$ in a water sample?
A. $\mathrm{H}^{+}$
B. $\mathrm{Cs}^{+}$
C. $\mathrm{Sr}^{2+}$
D. $\mathrm{NH}_{4}^{+}$
127. Write the balanced complete ionic equation for the reaction that occurs when 0.20 M of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is added to an equal volume of $0.20 \mathrm{M} \mathrm{Na}{ }_{2} \mathrm{CO}_{3}$.
128. Calculate the minimum number of moles of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ required to start precipitation in 50.0 mL of $0.15 \mathrm{M} \mathrm{ZnI}_{2}$.
129. In a titration, 25.00 mL of $\mathrm{NaCl}_{(a q)}$ reacts completely with 42.20 mL of $0.100 \mathrm{M} \mathrm{AgNO}_{3}$. What is the $\left[\mathrm{Cl}^{-}\right]$in the original solution?
(3 mal
130. The following data was obtained when 20.0 mL of a saturated solution of $\mathrm{PbI}_{2}$ was evaporated to dryness.

| Mass of evaporating dish | 30.250 g |
| :--- | :--- |
| Mass of evaporating dish and residue | 30.262 g |

Use this information to determine the $\mathrm{K}_{s p}$ of $\mathrm{PbI}_{2}$.
(4 marks)
131. Calculate the molar solubility of $\mathrm{SrF}_{2}$.
132. Does a precipitate form when 3.0 mL of $1.0 \times 10^{-3} \mathrm{M} \mathrm{NaBr}$ is added to 2.0 mL of $1.0 \times 10^{-3} \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ ?
133. Hard water, containing $\mathrm{Ca}^{2+}$ ions, forms a precipitate with sodium stearate $\left(\mathrm{NaC}_{18} \mathrm{H}_{35} \mathrm{O}_{2}\right)$.
a) Write the net ionic reaction that represents this precipitation.
(2 marks)
b) Identify another compound that could be used to remove $\mathrm{Ca}^{2+}$ from hard water.
134. Calculate the mass of $\mathrm{SrCO}_{3}$ dissolved in 1.00 L of a saturated solution of $\mathrm{SrCO}_{3}$.
135. When equal volumes of $0.20 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and 0.20 M KCl are mixed, a precipitate of $\mathrm{PbCl}_{2}$ forms.
a) Write the formula equation for the above reaction.
b) Write the complete ionic equation for the above reaction.
c) Write the net ionic equation for the above reaction.
136. Calculate the maximum $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ that can exist in $0.0010 \mathrm{M} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$.
137. A 30.00 mL sample of a saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ was heated in an evaporating dish until all the water was evaporated. The following data were recorded:

| Volume of solution | 30.00 mL |
| :--- | :---: |
| Mass of evaporating dish | 32.125 g |
| Mass of evaporating dish and solid $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ | 32.260 g |

Calculate the $\mathrm{K}_{s p}$ value for $\mathrm{Ag}_{2} \mathrm{SO}_{4}$.
138. Calculate the solubility of $\mathrm{SrSO}_{4}$ in grams per litre.
139. A 100.0 mL saturated solution of $\mathrm{FeF}_{2}$ contains 0.0787 g of solute.

Determine $\left[\mathrm{Fe}^{2+}\right]$ and $\left[\mathrm{F}^{-}\right]$in the solution.
140.

Consider the following information and accompanying diagram:
In a titration experiment, $\mathrm{AgNO}_{3(a q)}$ was used to determine the $\left[\mathrm{Cl}^{-}\right]$in a water sample and the following data were recorded:

$$
\left[\mathrm{AgNO}_{3}\right]=0.125 \mathrm{M}
$$

Volume of water sample containing $\mathrm{Cl}^{-}=20.00 \mathrm{~mL}$
Initial buret reading of $\mathrm{AgNO}_{3}=5.15 \mathrm{~mL}$
Final buret reading of $\mathrm{AgNO}_{3}=37.15 \mathrm{~mL}$

The equation for this reaction is

$$
\mathrm{Ag}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-} \rightarrow \mathrm{AgCl}_{(s)}
$$

Using the above data, determine the $\left[\mathrm{Cl}^{-}\right]$in the water sample.

(3 marks)
141. Calculate the mass of NaI necessary to begin precipitation of $\mathrm{Cu}^{+}$from a 250.0 mL sample of $0.010 \mathrm{M} \mathrm{CuNO}_{3}$.
142. When a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3(a q)}$ is mixed with a solution of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(a q)}$ a precipitate forms.
a) Write the net ionic equation for the precipitation reaction.
b) Explain what happens to the precipitate when HCl is added.
143. a) Write the net ionic equation for the reaction between $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}$ and $\mathrm{NaCl}_{(a q)}$.
b) Determine, with calculations, whether a precipitate will form when 15.0 mL of $0.050 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is added to 35.0 mL of 0.085 M NaCl .
144. After a 50.0 mL sample of a saturated solution of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ was heated to dryness, $7.2 \times 10^{-4} \mathrm{~g}$ of solid $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ remained. What is the value of $\mathrm{K}_{s p}$ for $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ ?
145. Calculate the maximum mass of $\mathrm{BaCl}_{2(s)}$ that can be added to 250 mL of $0.50 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}$ without forming a precipitate of $\mathrm{PbCl}_{2(s)}$.
146. Sufficient $\mathrm{Na}_{2} \mathrm{SO}_{4(s)}$ is added to $0.10 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ to cause a precipitate to form.
a) Write the net ionic equation for the precipitate formation.
b) Calculate the $\left[\mathrm{SO}_{4}{ }^{2-}\right]$ at the moment the precipitate starts to form.
147. Calculate the mass of solid $\mathrm{AgNO}_{3}$ that can be added to 2.0 L of a $0.10 \mathrm{M} \mathrm{K}_{2} \mathrm{CrO}_{4}$ solution in order to just start precipitation.
148. a) How would a saturated solution be prepared at room temperature?
b) Write a chemical equation to illustrate the equilibrium that exists in a saturated solution of $\mathrm{Be}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.
149. Calculate the iodate ion concentration in a saturated copper (II) iodate solution at $25^{\circ} \mathrm{C}$.

## Multiple Choice Answers

| 1 | C | 6 | D | 11 | C | 16 | D | 21 | A | 26 | D | 31 | C | 36 | C | 41 | A | 46 | B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | B | 7 | C | 12 | A | 17 | A | 22 | C | 27 | C | 32 | B | 37 | B | 42 | A | 47 | C |
| 3 | B | 8 | D | 13 | B | 18 | B | 23 | A | 28 | B | 33 | A | 38 | D | 43 | C | 48 | C |
| 4 | C | 9 | D | 14 | A | 19 | C | 24 | D | 29 | B | 34 | D | 39 | A | 44 | B | 49 | B |
| 5 | B | 10 | A | 15 | C | 20 | A | 25 | A | 30 | A | 35 | C | 40 | B | 45 | B | 50 | B |
| 51 | C | 56 | C | 61 | B | 66 | C | 71 | C | 76 | B | 81 | B | 86 | C | 91 | C | 96 | B |
| 52 | C | 57 | B | 62 | B | 67 | D | 72 | B | 77 | A | 82 | C | 87 | D | 92 | D | 97 | A |
| 53 | D | 58 | A | 63 | A | 68 | C | 73 | B | 78 | D | 83 | A | 88 | B | 93 | B | 98 | B |
| 54 | B | 59 | C | 64 | A | 69 | D | 74 | D | 79 | C | 84 | D | 89 | B | 94 | A | 99 | A |
| 55 | B | 60 | D | 65 | B | 70 | D | 75 | A | 80 | D | 85 | A | 90 | A | 95 | D | 100 | A |
| 101 | A | 111 | D | 116 | D | 121 | A | 126 | C |  |  |  |  |  |  |  |  |  |  |
| 102 | C | 112 | D | 117 | A | 122 | A |  |  |  |  |  |  |  |  |  |  |  |  |
| 103 | A | 113 | C | 118 | A | 123 | B |  |  |  |  |  |  |  |  |  |  |  |  |
| 104 | C | 114 | B | 119 | C | 124 | C |  |  |  |  |  |  |  |  |  |  |  |  |
| 105 | D | 115 | A | 120 | C | 125 | C |  |  |  |  |  |  |  |  |  |  |  |  |

## Written Answers

127. 

$$
\underbrace{\mathrm{Ba}_{(a q)}^{2+}+2 \mathrm{NO}_{3(a q)}^{-}}_{\frac{\mathbf{1}}{\mathbf{2}} \text { mark }}+\underbrace{2 \mathrm{Na}_{(a q)}^{+}+\mathrm{CO}_{3}^{2-}(a q)}_{\frac{1}{\mathbf{2}} \text { mark }} \rightarrow \underbrace{\mathrm{BaCO}_{3(s)}}_{\frac{\mathbf{1}}{\mathbf{2}} \text { mark }}+\underbrace{2 \mathrm{Na}_{(a q)}^{+}+2 \mathrm{NO}_{3(a q)}^{-}}_{\frac{1}{\mathbf{2}} \text { mark }}
$$

128. $\left[\mathrm{ZnI}_{2}\right]=0.15 \mathrm{M}$

$$
\begin{aligned}
\therefore\left[\mathrm{I}^{-}\right] & =2 \times 0.15 \mathrm{M} \\
& =0.30 \mathrm{M}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{PbI}_{2(s)} & \rightleftarrows \mathrm{Pb}^{2+}+2 \mathrm{I}^{-} \\
\mathrm{K}_{s p} & =\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2} \\
8.5 \times 10^{-9} & =(x)(0.30)^{2} \\
x & =9.44 \times 10^{-8} \mathrm{~mol} / \mathrm{L} \\
\text { moles } & =9.44 \times 10^{-8} \mathrm{~mol} / \mathrm{L} \times 0.0500 \mathrm{~L} \\
& =4.7 \times 10^{-9} \mathrm{~mol}
\end{aligned}
$$

129. 

$$
\begin{aligned}
\mathrm{Ag}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-} & \rightarrow \mathrm{AgCl}_{(s)} \\
\mathrm{mol} \mathrm{Ag}^{+} & =(0.100 \mathrm{~mol} / \mathrm{L})(0.04220 \mathrm{~L}) \\
& =0.00422 \mathrm{~mol} \\
\mathrm{~mol} \mathrm{Cl}^{-} & =\mathrm{mol} \mathrm{Ag}^{+} \\
{\left[\mathrm{Cl}^{-}\right] } & =\frac{0.00422 \mathrm{~mol}}{0.02500 \mathrm{~L}} \\
& =0.169 \mathrm{M}
\end{aligned}
$$

130. Mass of $\mathrm{PbI}_{2}=30.262 \mathrm{~g}-30.250 \mathrm{~g}=0.012 \mathrm{~g}$

$$
\begin{aligned}
\text { Moles } \mathrm{PbI}_{2} & =0.012 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{461.0 \mathrm{~g}}=2.60 \times 10^{-5} \mathrm{~mol} \\
{\left[\mathrm{~Pb}^{2+}\right] } & =\frac{2.60 \times 10^{-5} \mathrm{~mol}}{0.0200 \mathrm{~L}}=1.3 \times 10^{-3} \mathrm{M} \\
{\left[\mathrm{I}^{-}\right] } & =\frac{2 \times 2.60 \times 10^{-5} \mathrm{~mol}}{0.0200 \mathrm{~L}}=2.6 \times 10^{-3} \mathrm{M} \\
\mathrm{~K}_{s p} & =\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{I}^{-}\right]^{2}=\left(1.3 \times 10^{-3}\right)\left(2.6 \times 10^{-3}\right)^{2}=8.8 \times 10^{-9}
\end{aligned}
$$

131. $\quad \mathrm{SrF}_{2} \rightleftarrows \mathrm{Sr}^{2+}+\underset{\mathrm{S}}{2 \mathrm{~F}^{-}}$

$$
\begin{aligned}
\mathrm{K}_{s p} & =\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} \\
& =(\mathrm{s})(2 \mathrm{~s})^{2} \\
& =4.3 \times 10^{-9} \\
\mathrm{~s} & =1.0 \times 10^{-3} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

132. $\quad \mathrm{PbBr}_{2(s)} \rightleftarrows \mathrm{Pb}_{(a q)}^{2+}+2 \mathrm{Br}_{(a q)}^{-}$

$$
\begin{aligned}
{\left[\mathrm{Pb}^{2+}\right] } & =\frac{2.0 \mathrm{~mL}}{5.0 \mathrm{~mL}} \times 1.0 \times 10^{-3} \mathrm{M}=4.0 \times 10^{-4} \mathrm{M} \\
{\left[\mathrm{Br}^{-}\right] } & =\frac{3.0 \mathrm{~mL}}{5.0 \mathrm{~mL}} \times 1.0 \times 10^{-3} \mathrm{M}=6.0 \times 10^{-4} \mathrm{M}
\end{aligned}
$$

Trial $\mathrm{K}_{s p}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Br}^{-}\right]^{2}$

$$
\begin{aligned}
& =\left(4.0 \times 10^{-4}\right)\left(6.0 \times 10^{-4}\right)^{2} \\
& =1.4 \times 10^{-10}
\end{aligned}
$$

Since Trial $\mathrm{K}_{s p}$ is less than $\mathrm{K}_{s p}\left(6.6 \times 10^{-6}\right)$ no precipitate forms.
133. a) $\mathrm{Ca}_{(a q)}^{2+}+2 \mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2(a q)}^{-} \rightarrow \mathrm{Ca}\left(\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{O}_{2}\right)_{2(s)}$
b) $\quad \mathrm{Na}_{2} \mathrm{CO}_{3}$
134. $\quad \mathrm{SrCO}_{3(s)} \rightleftarrows \mathrm{Sr}_{(a q)}^{2+}+\mathrm{CO}_{3}^{2-}{ }_{(a q)}^{2-}$

$$
\begin{aligned}
\mathrm{K}_{s p} & =\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{CO}_{3}^{2-}\right]=5.6 \times 10^{-10} \\
{\left[\mathrm{Sr}^{2+}\right] } & =\left[\mathrm{CO}_{3}^{2-}\right]=2.36 \times 10^{-5}
\end{aligned}
$$

Mass of $\mathrm{SrCO}_{3}$ dissolved in $1.00 \mathrm{~L}=2.36 \times 10^{-5} \mathrm{~mol} \times \frac{147.6 \mathrm{~g}}{\mathrm{~mol}}$

$$
=3.5 \times 10^{-3} \mathrm{~g}
$$

135. a) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}+2 \mathrm{KCl}_{(a q)} \rightarrow \mathrm{PbCl}_{2(s)}+2 \mathrm{KNO}_{3(a q)}$
b) $\mathrm{Pb}_{(a q)}^{2+}+2 \mathrm{NO}_{3}^{-}{ }_{(a q)}+2 \mathrm{~K}_{(a q)}^{+}+2 \mathrm{Cl}_{(a q)}^{-} \rightarrow \mathrm{PbCl}_{2(s)}+2 \mathrm{~K}_{(a q)}^{+}+2 \mathrm{NO}_{3}^{-}{ }_{(a q)}$
c) $\mathrm{Pb}_{(a q)}^{2+}+2 \mathrm{Cl}_{(a q)}^{-} \rightarrow \mathrm{PbCl}_{2(s)}$
136. $\mathrm{K}_{s p} \quad \mathrm{MgCO}_{3}=6.8 \times 10^{-6}$

$$
\begin{aligned}
& \mathrm{MgCO}_{3(s)} \rightleftarrows \quad \mathrm{Mg}_{(a q)}^{2+} \quad+\mathrm{CO}_{3}{ }_{(a q)}^{2-} \\
& 1.0 \times 10^{-3} \mathrm{M} \quad x \\
& {\left[\mathrm{CO}_{3}{ }^{2-}\right]=\frac{\mathrm{K}_{s p}}{\left[\mathrm{Mg}^{2+}\right]}} \\
& =\frac{6.8 \times 10^{-6}}{1.0 \times 10^{-3}} \\
& =6.8 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

137. Mass of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ collected is $32.260 \mathrm{~g}-32.125 \mathrm{~g}=0.135 \mathrm{~g}$

$$
\text { Solubility of } \begin{aligned}
\mathrm{Ag}_{2} \mathrm{SO}_{4} & =\frac{0.135 \mathrm{~g} \mathrm{Ag}_{2} \mathrm{SO}_{4}}{0.03000 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{311.9 \mathrm{~g}} \\
& =0.0144 \mathrm{~mol} / \mathrm{L} \\
\mathrm{Ag}_{2} \mathrm{SO}_{4(s)} & \rightleftarrows 2 \mathrm{Ag}_{(a q)}^{+}+\mathrm{SO}_{4(a q)}^{2-} \\
\mathrm{K}_{s p} & =\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{4}^{2-}\right] \\
& =(0.0288)^{2}(0.0144) \\
& =1.20 \times 10^{-5}
\end{aligned}
$$

138. 

$$
\mathrm{SrSO}_{4(\mathrm{~s})} \rightleftarrows \mathrm{Sr}_{(\mathrm{aq})}^{2+}+\mathrm{SO}_{4(\mathrm{aq})}^{2-}
$$

$$
\begin{aligned}
\mathrm{K}_{s p}=\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right] & =3.4 \times 10^{-7} \\
\mathrm{~s}^{2} & =3.4 \times 10^{-7}
\end{aligned}
$$

$$
\text { Solubility }=\mathrm{s}=5.8 \times 10^{-4} \mathrm{M}
$$

Solubility in $\mathrm{g} / \mathrm{L}=5.8 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \times \frac{183.7 \mathrm{~g}}{\mathrm{~mol}}$

$$
=0.11 \mathrm{~g} / \mathrm{L}
$$

139. $\left[\mathrm{FeF}_{2}\right]=0.0787 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{93.8 \mathrm{~g}} \times \frac{1}{0.1000 \mathrm{~L}}$

$$
=8.39 \times 10^{-3} \mathrm{M}
$$

$$
\begin{aligned}
& \mathrm{FeF}_{2(a q)} \rightarrow \mathrm{Fe}_{(a q)}^{2+}+2 \mathrm{~F}_{(a q)}^{-} \\
& {\left[\mathrm{Fe}^{2+}\right]=8.39 \times 10^{-3} \mathrm{M}} \\
& {\left[\mathrm{~F}^{-}\right]=1.68 \times 10^{-2} \mathrm{M}}
\end{aligned}
$$

140. Volume $\mathrm{AgNO}_{3}$ used $=37.15 \mathrm{~mL}-5.15 \mathrm{~mL}=32.00 \mathrm{~mL}$

$$
\begin{aligned}
\mathrm{mol} \mathrm{Ag}^{+} & =0.125 \mathrm{~mol} / \mathrm{L} \times 0.03200 \mathrm{~L} \\
& =0.00400 \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{mol} \mathrm{Cl} & \\
- & \mathrm{mol} \mathrm{Ag}^{+} \\
& =0.00400 \mathrm{~mol} \\
{\left[\mathrm{Cl}^{-}\right] } & =\frac{0.00400 \mathrm{~mol}}{0.02000 \mathrm{~L}} \\
& =0.200 \mathrm{M}
\end{aligned}
$$

141. 

$$
\begin{aligned}
\mathrm{CuI}_{(s)} & \rightleftarrows \mathrm{Cu}_{(a q)}^{+}+\mathrm{I}_{(a q)}^{-} \\
\mathrm{K}_{s p} & =\left[\mathrm{Cu}^{+}\right]\left[\mathrm{I}^{-}\right]=1.3 \times 10^{-12} \\
{\left[\mathrm{I}^{-}\right] } & =\frac{\mathrm{K}_{s p}}{\left[\mathrm{Cu}^{+}\right]}=\frac{1.3 \times 10^{-12}}{0.010}=1.3 \times 10^{-10} \mathrm{M} \\
& =[\mathrm{NaI}]
\end{aligned}
$$

mass of $\mathrm{NaI}=1.3 \times 10^{-1} \mathrm{~mol} / \mathrm{L} \times \frac{149.9 \mathrm{~g}}{\text { mole }} \times 0.250 \mathrm{~L}$

$$
=4.9 \times 10^{-9} \mathrm{~g}
$$

142. a) $\quad \mathrm{Ca}_{(a q)}^{2+}+\mathrm{CO}_{3}{ }_{(a q)}^{2-} \rightarrow \mathrm{CaCO}_{3(s)}$
b) Addition of HCl provides $\mathrm{H}_{(a q)}^{+}$which reacts with the $\mathrm{CO}_{3}{ }_{(a q)}^{2-}$.

$$
\mathrm{H}_{(a q)}^{+}+\mathrm{CO}_{3(a q)}^{2-} \rightarrow \mathrm{HCO}_{3(a q)}^{-}
$$

This reduces the $\left[\mathrm{CO}_{3}{ }_{(a q)}^{2-}\right]$ in the solubility equilibrium,

$$
\mathrm{CaCO}_{3(s)} \rightleftarrows \mathrm{Ca}_{(a q)}^{2+}+\mathrm{CO}_{3(a q)}^{2-}
$$

causing more solid to dissolve to offset the stress caused by the reduction in concentration.
143. a) $\quad \mathrm{Pb}_{(a q)}^{2+}+2 \mathrm{Cl}_{(a q)}^{-} \rightarrow \mathrm{PbCl}_{2(s)}$
b)

$$
\begin{aligned}
{\left[\mathrm{Pb}^{2+}\right] } & =0.050 \mathrm{M} \times \frac{15.0 \mathrm{~mL}}{50.0 \mathrm{~mL}}=0.015 \mathrm{M} \\
{\left[\mathrm{Cl}^{-}\right] } & =0.085 \mathrm{M} \times \frac{35.0 \mathrm{~mL}}{50.0 \mathrm{~mL}}=0.0595 \mathrm{M} \\
\text { Trial } \mathrm{K}_{s p} & =\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}=(0.015)(0.0595)^{2}=5.3 \times 10^{-5} \\
\mathrm{~K}_{s p} \text { for } \mathrm{PbCl}_{2} & =1.2 \times 10^{-5}
\end{aligned}
$$

Since Trial $\mathrm{K}_{s p}>\mathrm{K}_{s p}$, a precipitate does form.
144. $\quad \mathrm{Ag}_{2} \mathrm{SO}_{4(s)} \rightleftarrows 2 \mathrm{Ag}_{(a q)}+\mathrm{SO}_{4}{ }_{(a q)}^{2-}$

$$
\begin{aligned}
{\left[\mathrm{Ag}_{2} \mathrm{SO}_{4}\right] } & =\frac{7.2 \times 10^{-4} \mathrm{~g}}{0.0500 \mathrm{~L}} \times \frac{1 \mathrm{~mole}}{311.9 \mathrm{~g}}=4.62 \times 10^{-5} \mathrm{M} \\
{\left[\mathrm{Ag}^{+}\right] } & =2 \times 4.62 \times 10^{-5} \mathrm{M}=9.23 \times 10^{-5} \mathrm{M} \\
{\left[\mathrm{SO}_{4}^{2-}\right] } & =4.62 \times 10^{-5} \mathrm{M} \\
\mathrm{~K}_{s p} & =\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{SO}_{4}^{2-}\right] \\
& =\left(9.23 \times 10^{-5}\right)^{2}\left(4.62 \times 10^{-5}\right) \\
& =3.9 \times 10^{-13}
\end{aligned}
$$

145. 

$$
\mathrm{PbCl}_{2(s)} \rightleftarrows \mathrm{Pb}_{(a q)}^{2+}+2 \mathrm{Cl}_{(a q)}^{-}
$$

$$
\mathrm{K}_{s p}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}
$$

$$
1.2 \times 10^{-5}=(0.50)\left[\mathrm{Cl}^{-}\right]^{2}
$$

$$
\left[\mathrm{Cl}^{-}\right]=4.90 \times 10^{-3} \mathrm{M}
$$

In 250 mL :
moles $\mathrm{Cl}^{-}=4.90 \times 10^{-3} \mathrm{~mol} / \mathrm{L} \times 0.25 \mathrm{~L}=1.22 \times 10^{-3} \mathrm{~mol} \mathrm{Cl}^{-}$
moles $\mathrm{BaCl}_{2}=\frac{1}{2} \mathrm{~mol} \mathrm{Cl}^{-}$

$$
\begin{aligned}
& =\frac{1}{2} \times 1.22 \times 10^{-3} \mathrm{~mol} \\
& =6.12 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

Mass $\mathrm{BaCl}_{2}=6.12 \times 10^{-4} \mathrm{~mol} \times \frac{208.3 \mathrm{~g}}{1 \mathrm{~mol}}$

$$
=0.13 \mathrm{~g} \mathrm{BaCl}_{2}
$$

146. a)

$$
\begin{aligned}
& \mathrm{Ba}_{(a q)}^{2+}+\mathrm{SO}_{4}^{2-}(a q) \\
& {\left[\mathrm{SO}_{4}^{2-}\right] }=\frac{\mathrm{K}_{s p}}{\left[\mathrm{Ba}^{2+}\right]} \\
&=\frac{1.1 \times 10^{-10}}{0.10} \\
&=1.1 \times 10^{-9} \mathrm{M}
\end{aligned}
$$

147. 

$$
\begin{aligned}
\mathrm{Ag}_{2} \mathrm{CrO}_{4(s)} & \rightleftarrows 2 \mathrm{Ag}_{(a q)}^{+}+\mathrm{CrO}_{4(a q)}^{2-} \\
\mathrm{K}_{s p} & =\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]=1.1 \times 10^{-12} \\
{\left[\mathrm{CrO}_{4}^{2-}\right] } & =0.10 \mathrm{M} \\
{\left[\mathrm{Ag}^{+}\right]^{2} } & =\frac{1.1 \times 10^{-12}}{0.10} \\
{\left[\mathrm{Ag}^{+}\right] } & =3.3 \times 10^{-6} \mathrm{M}
\end{aligned}
$$

Mass of $\mathrm{AgNO}_{3}=3.3 \times 10^{-6} \frac{\mathrm{~mol}}{\mathrm{~L}} \times 2.0 \mathrm{~L} \times \frac{169.9 \mathrm{~g}}{1 \mathrm{~mol}}$

$$
=1.1 \times 10^{-3} \mathrm{~g}
$$

148. a) Add solute to solvent until no more solute dissolves.
b) $\quad \mathrm{Be}_{3}\left(\mathrm{PO}_{4}\right)_{2(s)} \rightleftarrows 3 \mathrm{Be}^{2+}{ }_{(a q)}+2 \mathrm{PO}_{4}{ }_{(a q)}^{3-}$
149. $\quad \mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2(s)} \rightleftarrows \mathrm{Cu}_{(a q)}^{2+}+2 \mathrm{IO}_{3}{ }_{(a q)}^{-}$

$$
\mathrm{K}_{s p}=\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{IO}_{3}^{-}\right]^{2}=6.9 \times 10^{-8}
$$

$6.9 \times 10^{-8}=(x)(2 x)^{2}$

$$
\begin{aligned}
4 x^{3} & =6.9 \times 10^{-8} \\
x & =2.6 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

$$
\left[\mathrm{IO}_{3}^{-}\right]=2 \times 2.6 \times 10^{-3} \mathrm{M}
$$

$$
=5.2 \times 10^{-3} \mathrm{M}
$$

