87. An equal number of moles of Na_2CO_3 is added to four different 10.0 mL samples.

Sample 1	Sample 2	Sample 3	Sample 4			
$0.50 \mathrm{M}\mathrm{Ba}^{2+}_{(aq)}$	$0.50 \mathrm{M} \mathrm{Ca}^{2+}_{(aq)}$	$0.50 \mathrm{M}\mathrm{Mg}^{2+}_{(aq)}$	$0.50 \mathrm{M}\mathrm{Sr}^{2+}_{(aq)}$			

(1

A precipitate forms in only one of the samples. Identify the cation which is present in the precipitate.

- A. Ba²⁺
- B. Ca²⁺
- C. Mg²⁺
- D. Sr²⁺

88.

. What is the net ionic equation for the reaction between $BaS_{(aq)}$ and $Sr(OH)_{2(aq)}$?

A.
$$\operatorname{Sr}_{(aq)}^{2+} + \operatorname{S}_{(aq)}^{2-} \to \operatorname{SrS}_{(s)}$$

B. $\operatorname{Ba}_{(aq)}^{2+} + 2\operatorname{OH}_{(aq)}^{-} \to \operatorname{Ba}(\operatorname{OH})_{2(s)}$
C. $\operatorname{Ba}_{(aq)}^{2+} + \operatorname{S}_{(aq)}^{2-} + \operatorname{Sr}_{(aq)}^{2+} + 2\operatorname{OH}_{(aq)}^{-} \to \operatorname{Ba}(\operatorname{OH})_{2(s)} + \operatorname{SrS}_{(s)}$
D. $\operatorname{Ba}_{(aq)}^{2+} + \operatorname{S}_{(aq)}^{2-} + \operatorname{Sr}_{(aq)}^{2+} + 2\operatorname{OH}_{(aq)}^{-} \to \operatorname{Ba}(\operatorname{OH})_{2(s)} + \operatorname{Sr}_{(aq)}^{2+} + \operatorname{S}_{(aq)}^{2-}$

89. In which of the following would $PbCl_{2(s)}$ be **least** soluble?

- A. 1M HCl
- B. 1M BaCl₂
- C. 1M K₂SO₄
- D. $1 \text{ M Pb}(\text{NO}_3)_2$

90. The solubility of $ZnCO_3$ is 6.4×10^{-9} M. What is the value of K_{sp} for $ZnCO_3$?

- A. 4.1×10^{-17}
- B. 6.4×10^{-9}
- C. 1.3×10^{-8}
- D. 8.0×10^{-5}

91. When equal volumes of 0.20 M NaOH and 0.20 M CaS are mixed together,

- A. a precipitate forms and the Trial K_{sp} would be less than K_{sp} .
- B. no precipitate forms and the Trial K_{sp} would be less than K_{sp} .
- C. a precipitate forms and the Trial K_{sp} would be greater than K_{sp} .
- D. no precipitate forms and the Trial K_{sp} would be greater than K_{sp} .

92. Which of the following solutes will produce a molecular solution?

- A. HCl
- B. Fe_3S_3
- C. HNO₃
- D. CH₃OH

93. Which of the following would best describe the solubility of a solute?

- A. litres per gram
- B. moles per litre
- C. grams per mole
- D. moles per second
- 94. Which compound will have the lowest solubility?
 - A. FeS
 - B. CaSO₄
 - C. AgBrO₃
 - D. $Fe(NO_3)_3$

95. Which of the following precipitates may form when equal volumes of 0.3 M AgNO₃, 0.3 M SrCl₂ and 0.3 M Na₂CO₃ are mixed together?

- A. SrCO₃ and AgCl
- B. Ag₂CO₃ and AgCl
- C. SrCO₃ and Ag₂CO₃
- D. SrCO₃, Ag₂CO₃ and AgCl
- 96. An experiment is conducted to identify an unknown cation that is present in each of four beakers.

Which of the following could be the unknown cation?

- A. Ag⁺
- B. Fe⁺³
- C. Ba⁺²
- D. Be⁺²

97. Given the equilibrium reaction:

$$\underline{2\text{NaNO}_{3(aq)}} + \text{Ag}_2\text{S}_{(s)} \rightleftharpoons 2\text{AgNO}_{3(aq)} + \text{Na}_2\text{S}_{(aq)}$$

Which K_{sp} expression best describes the net ionic reaction?

- A. $K_{sp} = \left[\underline{Ag^+}\right]^2 \left[\underline{S^{2-}}\right]$
- B. $K_{sp} = \frac{1}{[Ag^+]^2 [S^{2-}]}$ -----

C.
$$K_{sp} = \frac{\left[Ag_{2}S\right]}{\left[Ag_{2}S\right]}$$

D.
$$K_{sp} = \frac{\left[AgNO_3\right]^2 \left[Na_2S\right]}{\left[NaNO_3\right]^2}$$

98. Two salt solutions were mixed and a Trial K_{sp} was calculated to be 2.0×10^{-9} . The K_{sp} value is 1.0×10^{-10} . From this information, which of the following is a true statement?

	K _{sp} comparison	Outcome
A.	Trial $K_{sp} < K_{sp}$	precipitate forms
B.	Trial $K_{sp} > K_{sp}$	precipitate forms
C.	Trial $K_{sp} < K_{sp}$	no precipitate forms
D.	Trial $K_{sp} > K_{sp}$	no precipitate forms

99. A saturated solution of $SrSO_4$ has a $\left[SO_4^{2-}\right]$ of 1.0×10^{-4} M. What is the $\left[Sr^{2+}\right]$?

- A. $3.4 \times 10^{-3} \,\mathrm{M}$
- B. 5.8×10^{-4} M
- C. 1.0×10^{-4} M
- D. $3.4 \times 10^{-7} \,\text{M}$

100. Which of the following would form a saturated solution when 0.010 mol of the solid solute is added to 100 mL of water?

- A. BaCO₃
- B. FeSO₄
- C. NaCN
- D. $Pb(NO_3)_2$

101. Which net ionic equation best describes the reaction that exists in a solution prepared by mixing equal volumes of $0.20 \text{ M Ca}(\text{NO}_3)_2$ and $0.20 \text{ M Na}_2\text{CO}_3$?

A.
$$\operatorname{Ca}_{(aq)}^{2+} + \operatorname{CO}_{3(aq)}^{2-} \rightleftharpoons \operatorname{CaCO}_{3(s)}$$

B. $\operatorname{Na}_{(aq)}^{+} + \operatorname{NO}_{3(aq)}^{-} \rightleftharpoons \operatorname{NaNO}_{3(s)}$
C. $\operatorname{Ca}(\operatorname{NO}_{3})_{2(aq)} + \operatorname{Na}_{2}\operatorname{CO}_{3(aq)} \rightleftharpoons 2\operatorname{NaNO}_{3(s)} + \operatorname{CaCO}_{3(s)}$
D. $\operatorname{Ca}(\operatorname{NO}_{3})_{2(aq)} + \operatorname{Na}_{2}\operatorname{CO}_{3(aq)} \rightleftharpoons 2\operatorname{NaNO}_{3(aq)} + \operatorname{CaCO}_{3(s)}$

- 102. Which compound will have the greatest solubility in water?
 - A. CuCl
 - B. FeCO₃
 - C. MgSO₄
 - D. $Cu_3(PO_4)_2$

103. Which cation below can be used to separate SO_4^{2-} from S^{2-} ions by precipitation?

- A. Sr²⁺
- B. Pb²⁺
- C. Cs⁺
- D. Be²⁺
- 104. What will be the effect of adding some solid AgNO₃ to a saturated solution of AgCl ?
 - A. The AgNO₃ will not dissolve.
 - B. More solid AgCl will dissolve.
 - C. More solid AgCl will be produced.
 - D. The AgNO₃ will not affect the AgCl equilibrium.

- 105. For a saturated solution, the K_{sp} expression does not contain any solid solute term. What is the reason for this?
 - A. The solid solute is a product.
 - B. The solid solute is a reactant.
 - C. The solid solute continues to change in amount.
 - D. The solid solute does not change in concentration.
- 106. Which of the statements below describes the K_{sp} expression for the salt barium phosphate?

A.
$$K_{sp} = [Ba^{2+}][PO_4^{3-}]$$

B. $K_{sp} = [Ba^{2+}]^3 [PO_4^{3-}]^2$
C. $K_{sp} = [3Ba^{2+}][2PO_4^{3-}]$
D. $K_{sp} = [3Ba^{2+}]^3 [2PO_4^{3-}]^2$

- 107. What is the solubility of $Fe(OH)_2$?
 - A. 4.9×10^{-17} M
 - B. 1.2×10^{-17} M
 - C. 3.7×10^{-6} M
 - D. 2.3×10^{-6} M

108. Which of the following ions would have the highest concentration in 0.1 M CO_3^{2-} ?

- A. Ba²⁺
- B. Ca²⁺
- C. Sr²⁺
- D. Mg^{2+}
- 109. Which of the solutes below can form an ionic solution with the highest conductivity?
 - A. PbS
 - B. CH₃Cl
 - C. NaNO₃
 - D. CH₃COOH

110. The following data was collected to determine the solubility of a substance:

Mass of solute dissolved	5.00 g
Volume of solvent	250.0 mL
Molar mass of solute	100.0 g/mol
Molar mass of solvent	20.0 g/mol

Which of the following best describes its solubility?

- A. $2.00 \times 10^{-2} \text{ g/mL}$
- B. 5.00×10^{-2} mol
- C. 0.250 mol
- D. 1.00 mol/L
- 111. Which value best represents the total ion concentration when 0.10 moles of K_3PO_4 is present in 0.5 L of solution?
 - A. 0.1 M
 - B. 0.2 M
 - C. 0.4 M
 - D. 0.8 M
- 112. What will happen when equal volumes of $0.20 \text{ M} (\text{NH}_4)_2 \text{ S}$ and $0.20 \text{ M} \text{ Sr}(\text{OH})_2$ are mixed?
 - A. SrS precipitates.
 - B. NH₄OH precipitates.
 - C. Both NH₄OH and SrS precipitate.
 - D. No precipitate forms.
- 113. Which anion would be most effective in removing the cations responsible for hard water?
 - A. S^{2–}
 - B. Cl⁻
 - C. PO₄³⁻
 - D. SO₄²⁻

114. Which of the following is the K_{sp} expression for barium phosphate?

A.
$$K_{sp} = [Ba^{2+}][PO_4^{3-}]$$

B. $K_{sp} = [Ba^{2+}]^3 [PO_4^{3-}]^2$
C. $K_{sp} = [3Ba^{2+}][2PO_4^{3-}]$
D. $K_{sp} = [3Ba^{2+}]^3 [2PO_4^{3-}]^2$

115. The solubility of Mg(OH)₂ is found to be 1.2×10^{-4} M. What is its K_{sp}?

- A. 6.9×10^{-12}
- B. 1.7×10^{-12}
- C. 1.4×10^{-8}
- D. 1.2×10^{-4}

116. Which of the following is true for the salt SrF_2 at 25°C?

- A. It has a high solubility.
- B. It will not dissolve at all.
- C. Its solubility is 1.6×10^{-3} M.
- D. Its solubility is 1.0×10^{-3} M.
- 117. Which of the following ions could be used in the lowest concentration to remove Ag⁺ ions from a polluted water sample?
 - A. I⁻
 - B. Br^{-}
 - C. BrO_3^{-}
 - D. CO₃²⁻

118. Which of the solutes below is both ionic and most soluble?

- A. RbOH
- B. CH₃OH
- C. $Ca(OH)_2$
- D. $Fe(OH)_3$

119. Which of the following is commonly used to describe the solubility of a solute?

- A. mass of solute/moles of solute
- B. moles of solution/mass of solute
- C. mass of solute/volume of solution
- D. mass of solution/volume of solute
- 120. Given a saturated solution of $Ca(OH)_2$ which of the following statements is always true?
 - A. The $\left[Ca^{2+} \right]$ is twice that of $\left[OH^{-} \right]$.
 - B. The OH^- precipitates half as fast as the Ca^{2+} .
 - C. The rate of crystallization equals the rate of dissolving.
 - D. The rate of dissolving is greater than the rate of crystallization.

- 121. What happens when equal volumes of 0.20 M BaCl_2 and $0.20 \text{ M Pb}(\text{NO}_3)_2$ are mixed?
 - A. Only PbCl₂ precipitates.
 - B. Only $Ba(NO_3)_2$ precipitates.
 - C. Both $PbCl_2$ and $Ba(NO_3)_2$ precipitate.
 - D. No precipitate forms.
- 122. Which of the following best represents the net ionic reaction resulting from the mixing of equal volumes of $0.2 \text{ M Ca}(\text{NO}_3)_2$ and 0.2 M NaOH?

A.
$$\operatorname{Ca}_{(aq)}^{2+} + 2\operatorname{OH}_{(aq)}^{-} \rightarrow \operatorname{Ca}(\operatorname{OH})_{2(s)}^{-}$$

B. $\operatorname{Ca}(\operatorname{NO}_{3})_{2(aq)} + 2\operatorname{NaOH}_{(aq)} \rightarrow \operatorname{Ca}(\operatorname{OH})_{2(s)} + 2\operatorname{NaNO}_{3(aq)}^{-}$
C. $\operatorname{Ca}_{(aq)}^{2+} + 2\operatorname{NO}_{3(aq)}^{-} + 2\operatorname{Na}_{(aq)}^{+} + 2\operatorname{OH}_{(aq)}^{-} \rightarrow \operatorname{Ca}(\operatorname{OH})_{2(s)}^{-} + 2\operatorname{NaNO}_{3(aq)}^{-}$
D. $\operatorname{Ca}_{(aq)}^{2+} + 2\operatorname{NO}_{3(aq)}^{-} + 2\operatorname{Na}_{(aq)}^{+} + 2\operatorname{OH}_{(aq)}^{-} \rightarrow \operatorname{Ca}(\operatorname{OH})_{2(s)}^{-} + 2\operatorname{Na}_{(aq)}^{+} + 2\operatorname{NO}_{3(aq)}^{-}$

- 123. What is the K_{sp} expression for the precipitate formed when solutions of $Fe(NO_3)_3$ and $Sr(OH)_2$ are mixed?
 - A. $K_{sp} = [Sr^{2+}][OH^{-}]^{2}$ B. $K_{sp} = [Fe^{3+}][OH^{-}]^{3}$ C. $K_{sp} = [Sr^{2+}][2NO_{3}^{-}]$ D. $K_{sp} = [Fe^{3+}][3OH^{-}]$
- 124. At some temperature greater than 25°C, the K_{sp} for lead(II) sulphate becomes 1.0×10^{-7} . What is the solubility of the lead(II) sulphate at this temperature?
 - A. 1.0×10^{-14} M B. 5.0×10^{-8} M C. 2.0×10^{-7} M D. 3.2×10^{-4} M

125. What is the maximum $[Pb^{2+}]$ possible in a 0.10M NaCl solution?

- A. $1.2 \times 10^{-5} \,\mathrm{M}$
- B. $6.0 \times 10^{-5} \,\mathrm{M}$
- C. $1.2 \times 10^{-3} \,\mathrm{M}$
- D. $3.0 \times 10^{-3} \,\text{M}$

126. Which of the ions below could be used in a precipitation reaction to determine the $\left[SO_4^{2^-}\right]$ in a water sample?

- A. H^+
- B. Cs⁺
- C. Sr²⁺
- D. NH₄⁺

127. Write the balanced complete ionic equation for the reaction that occurs when 0.20 M of $Ba(NO_3)_2$ is added to an equal volume of 0.20 M Na_2CO_3 .

128. Calculate the minimum number of moles of $Pb(NO_3)_2$ required to start precipitation in 50.0 mL of 0.15 M ZnI₂.

129.In a titration, 25.00 mL of $NaCl_{(aq)}$ reacts completely with 42.20 mL of 0.100 M AgNO3.What is the $[Cl^-]$ in the original solution?(3 ma)

130. The following data was obtained when 20.0 mL of a saturated solution of PbI_2 was evaporated to dryness.

Mass of evaporating dish	30.250 g			
Mass of evaporating dish and residue	30.262 g			

Use this information to determine the K_{sp} of PbI₂.

- 131. Calculate the molar solubility of SrF_2 .
- 132. Does a precipitate form when 3.0 mL of 1.0×10^{-3} M NaBr is added to 2.0 mL of 1.0×10^{-3} M Pb(NO₃)₂ ?
- 133. Hard water, containing Ca^{2+} ions, forms a precipitate with sodium stearate $(NaC_{18}H_{35}O_2)$.
 - a) Write the net ionic reaction that represents this precipitation. (2 marks)
 - b) Identify another compound that could be used to remove Ca^{2+} from hard water.
- 134. Calculate the mass of $SrCO_3$ dissolved in 1.00 L of a saturated solution of $SrCO_3$.
- 135. When equal volumes of $0.20 \text{ M Pb}(\text{NO}_3)_2$ and 0.20 M KCl are mixed, a precipitate of PbCl₂ forms.
 - a) Write the formula equation for the above reaction.
 - b) Write the complete ionic equation for the above reaction.
 - c) Write the net ionic equation for the above reaction.

(4 marks)

- Calculate the maximum $[CO_3^{2-}]$ that can exist in 0.0010 M Mg(NO₃)₂. 136.
- A 30.00 mL sample of a saturated solution of Ag_2SO_4 was heated in an 137. evaporating dish until all the water was evaporated. The following data were recorded:

Volume of solution	30.00 mL
Mass of evaporating dish	32.125 g
Mass of evaporating dish and solid Ag ₂ SO ₄	32.260 g

Calculate the K_{sp} value for Ag_2SO_4 .

- 138. Calculate the solubility of SrSO₄ in grams per litre.
- A 100.0 mL saturated solution of FeF_2 contains 0.0787 g of solute. 139. Determine $[Fe^{2+}]$ and $[F^{-}]$ in the solution.
- 140. Consider the following information and accompanying diagram:

In a titration experiment, $AgNO_{3(aq)}$ was used to determine the $[Cl^{-}]$ in a water sample and the following data were recorded:

$$\operatorname{Ag}^{+}_{(aq)} + \operatorname{Cl}^{-}_{(aq)} \to \operatorname{AgCl}_{(s)}$$

Using the above data, determine the $[Cl^-]$ in the water sample.

(3 marks)

Calculate the mass of NaI necessary to begin precipitation of Cu⁺ from 141. a 250.0 mL sample of 0.010 M CuNO_3 .

- 142. When a solution of $Na_2CO_{3(aq)}$ is mixed with a solution of $Ca(NO_3)_{2(aq)}$ a precipitate forms.
 - a) Write the net ionic equation for the precipitation reaction.
 - b) Explain what happens to the precipitate when HCl is added.
- 143. a) Write the net ionic equation for the reaction between $Pb(NO_3)_{2(aa)}$ and $NaCl_{(aa)}$.
 - b) Determine, with calculations, whether a precipitate will form when 15.0 mL of $0.050 \text{ M} \text{ Pb}(\text{NO}_3)_2$ is added to 35.0 mL of 0.085 M NaCl.
- 144. After a 50.0 mL sample of a saturated solution of Ag_2SO_4 was heated to dryness, 7.2×10^{-4} g of solid Ag_2SO_4 remained. What is the value of K_{sp} for Ag_2SO_4 ?
- 145. Calculate the maximum mass of $BaCl_{2(s)}$ that can be added to 250 mL of 0.50 M Pb(NO₃)_{2(aq)} without forming a precipitate of PbCl_{2(s)}.
- 146. Sufficient $Na_2SO_{4(s)}$ is added to 0.10 M $Ba(NO_3)_2$ to cause a precipitate to form.
 - a) Write the net ionic equation for the precipitate formation.
 - b) Calculate the $[SO_4^{2-}]$ at the moment the precipitate starts to form.
- 147. Calculate the mass of solid $AgNO_3$ that can be added to 2.0 L of a 0.10 M K_2CrO_4 solution in order to just start precipitation.
- 148. a) How would a saturated solution be prepared at room temperature?
 - b) Write a chemical equation to illustrate the equilibrium that exists in a saturated solution of $Be_3(PO_4)_2$.
- 149. Calculate the iodate ion concentration in a saturated copper (II) iodate solution at 25° C.

1	С	6	D	11	С	16	D	21	А	26	D	31	С	36	С	41	А	46	В
2	В	7	С	12	А	17	А	22	С	27	С	32	В	37	В	42	А	47	С
3	В	8	D	13	В	18	В	23	А	28	В	33	А	38	D	43	С	48	С
4	С	9	D	14	А	19	С	24	D	29	В	34	D	39	А	44	В	49	В
5	В	10	А	15	С	20	А	25	А	30	А	35	С	40	В	45	В	50	В
51	С	56	С	61	В	66	С	71	С	76	В	81	В	86	С	91	С	96	В
52	С	57	В	62	В	67	D	72	В	77	А	82	С	87	D	92	D	97	А
53	D	58	А	63	А	68	С	73	В	78	D	83	А	88	В	93	В	98	В
54	В	59	С	64	А	69	D	74	D	79	С	84	D	89	В	94	А	99	А
55	В	60	D	65	В	70	D	75	А	80	D	85	А	90	А	95	D	100	А
101	А	111	D	116	D	121	А	126	С										
102	С	112	D	117	А	122	А												
103	А	113	С	118	А	123	В												
104	С	114	В	119	С	124	С												
105	D	115	А	120	С	125	С												

Written Answers

127.
$$\underbrace{\operatorname{Ba}_{(aq)}^{2+} + 2\operatorname{NO}_{3}(aq)}_{\frac{1}{2}\operatorname{mark}} + \underbrace{\operatorname{2Na}_{(aq)}^{+} + \operatorname{CO}_{3}(aq)}_{\frac{1}{2}\operatorname{mark}} \rightarrow \underbrace{\operatorname{BaCO}_{3(s)}}_{\frac{1}{2}\operatorname{mark}} + \underbrace{\operatorname{2Na}_{(aq)}^{+} + 2\operatorname{NO}_{3}(aq)}_{\frac{1}{2}\operatorname{mark}}$$
128.
$$[\operatorname{ZnI}_{2}] = 0.15 \,\mathrm{M}$$

$$\therefore [\operatorname{I}^{-}] = 2 \times 0.15 \,\mathrm{M}$$

$$= 0.30 \,\mathrm{M}$$

$$\operatorname{PbI}_{2(s)} \rightleftharpoons \operatorname{Pb}^{2+} + 2\operatorname{I}^{-}$$

$$\operatorname{K}_{sp} = [\operatorname{Pb}^{2+}][\operatorname{I}^{-}]^{2}$$

$$8.5 \times 10^{-9} = (x)(0.30)^{2}$$

$$x = 9.44 \times 10^{-8} \text{ mol/L}$$

moles = 9.44 × 10⁻⁸ mol/L × 0.0500 L
= 4.7 × 10⁻⁹ mol

129.
$$\operatorname{Ag}_{(aq)}^{+} + \operatorname{Cl}_{(aq)}^{-} \rightarrow \operatorname{AgCl}_{(s)}$$

mol $\operatorname{Ag}^{+} = (0.100 \text{ mol/L})(0.04220 \text{ L})$
 $= 0.00422 \text{ mol}$
mol $\operatorname{Cl}^{-} = \operatorname{mol} \operatorname{Ag}^{+}$
 $[\operatorname{Cl}^{-}] = \frac{0.00422 \text{ mol}}{0.02500 \text{ L}}$
 $= 0.169 \text{ M}$

130. Mass of
$$PbI_2 = 30.262 \text{ g} - 30.250 \text{ g} = 0.012 \text{ g}$$

Moles $PbI_2 = 0.012 \text{ g} \times \frac{1 \text{ mol}}{461.0 \text{ g}} = 2.60 \times 10^{-5} \text{ mol}$
 $\left[Pb^{2+}\right] = \frac{2.60 \times 10^{-5} \text{ mol}}{0.0200 \text{ L}} = 1.3 \times 10^{-3} \text{ M}$
 $\left[I^{-}\right] = \frac{2 \times 2.60 \times 10^{-5} \text{ mol}}{0.0200 \text{ L}} = 2.6 \times 10^{-3} \text{ M}$
 $K_{sp} = \left[Pb^{2+}\right] \left[I^{-}\right]^2 = (1.3 \times 10^{-3}) (2.6 \times 10^{-3})^2 = 8.8 \times 10^{-9}$

131.
$$\operatorname{SrF}_{2} \rightleftharpoons \operatorname{Sr}^{2+} + 2\operatorname{F}^{-}$$

$$s \qquad 2s$$

$$\operatorname{K}_{sp} = \left[\operatorname{Sr}^{2+}\right] \left[\operatorname{F}^{-}\right]^{2}$$

$$= (s)(2s)^{2}$$

$$= 4.3 \times 10^{-9}$$

$$s = 1.0 \times 10^{-3} \operatorname{mol/L}$$

132. $PbBr_{2(s)} \rightleftharpoons Pb^{2+}_{(aq)} + 2Br^{-}_{(aq)}$

$$\left[Pb^{2+} \right] = \frac{2.0 \text{ mL}}{5.0 \text{ mL}} \times 1.0 \times 10^{-3} \text{ M} = 4.0 \times 10^{-4} \text{ M}$$
$$\left[Br^{-} \right] = \frac{3.0 \text{ mL}}{5.0 \text{ mL}} \times 1.0 \times 10^{-3} \text{ M} = 6.0 \times 10^{-4} \text{ M}$$
$$\text{Trial } K_{sp} = \left[Pb^{2+} \right] \left[Br^{-} \right]^{2}$$
$$= \left(4.0 \times 10^{-4} \right) \left(6.0 \times 10^{-4} \right)^{2}$$
$$= 1.4 \times 10^{-10}$$

Since Trial K_{sp} is less than $K_{sp}(6.6 \times 10^{-6})$ no precipitate forms.

133. a)
$$Ca_{(aq)}^{2+} + 2C_{18}H_{35}O_{2(aq)}^{-} \rightarrow Ca(C_{18}H_{35}O_2)_{2(s)}$$
 b) Na_2CO_3

134. SrCO_{3(s)}
$$\rightleftharpoons$$
 Sr²⁺_(aq) + CO₃²⁻_(aq)
 $K_{sp} = [Sr^{2+}][CO_3^{2-}] = 5.6 \times 10^{-10}$
 $[Sr^{2+}] = [CO_3^{2-}] = 2.36 \times 10^{-5}$
Mass of SrCO₃ dissolved in 1.00 L = 2.36 × 10⁻⁵ mol × $\frac{147.6 \text{ g}}{\text{mol}}$
 $= 3.5 \times 10^{-3} \text{ g}$

135. a)
$$Pb(NO_3)_{2(aq)} + 2KCl_{(aq)} \rightarrow PbCl_{2(s)} + 2KNO_{3(aq)}$$

b) $Pb^{2+}_{c} \rightarrow + 2NO_{2-}^{-}_{c} \rightarrow + 2K^{+}_{c} \rightarrow + 2Cl^{-}_{c} \rightarrow PbCl_{2(s)} + 2K$

b)
$$Pb_{(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2K_{(aq)}^{+} + 2Cl_{(aq)}^{-} \rightarrow PbCl_{2(s)} + 2K_{(aq)}^{+} + 2NO_{3(aq)}^{-}$$

c) $Pb_{(aq)}^{2+} + 2Cl_{(aq)}^{-} \rightarrow PbCl_{(aq)}^{-} \rightarrow PbCl_{2(s)}^{-} + 2K_{(aq)}^{+} + 2NO_{3(aq)}^{-}$

x

c)
$$\operatorname{Pb}_{(aq)}^{2+} + 2\operatorname{Cl}_{(aq)}^{-} \to \operatorname{PbCl}_{2(s)}$$

136.
$$K_{sp} MgCO_3 = 6.8 \times 10^{-6}$$

 $MgCO_{3(s)} \rightleftharpoons Mg^{2+}_{(aq)} + CO_{3(aq)}^{2-}_{(aq)}$
 $1.0 \times 10^{-3} M$ x
 $[CO_3^{2-}] = \frac{K_{sp}}{[Mg^{2+}]}$
 $= \frac{6.8 \times 10^{-6}}{1.0 \times 10^{-3}}$
 $= 6.8 \times 10^{-3} M$

Mass of Ag_2SO_4 collected is 32.260 g - 32.125 g = 0.135 g137.

Solubility of
$$Ag_2SO_4 = \frac{0.135 \text{ g } Ag_2SO_4}{0.03000 \text{ L}} \times \frac{1 \text{ mol}}{311.9 \text{ g}}$$

= 0.0144 mol/L
 $Ag_2SO_{4(s)} \rightleftharpoons 2Ag^+_{(aq)} + SO_4^{2-}_{(aq)}$
 $K_{sp} = [Ag^+]^2 [SO_4^{2-}]$
= (0.0288)²(0.0144)
= 1.20 × 10^{-5}

138. $SrSO_{4(s)} \rightleftharpoons Sr_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ $s \qquad s$ $K_{sp} = [Sr^{2+}][SO_{4}^{2-}] = 3.4 \times 10^{-7}$ $s^{2} = 3.4 \times 10^{-7}$ Solubility = s = 5.8 × 10^{-4} M
Solubility in g/L = 5.8 × 10⁻⁴ mol/L × $\frac{183.7 \text{ g}}{\text{mol}}$ = 0.11 g/L139. [FeF₂] = 0.0787 g × $\frac{1 \text{ mol}}{93.8 \text{ g}} \times \frac{1}{0.1000 \text{ L}}$ $= 8.39 \times 10^{-3} \text{ M}$

$$\operatorname{FeF}_{2(aq)} \rightarrow \operatorname{Fe}^{2+}_{(aq)} + 2\operatorname{F}^{-}_{(aq)}$$

 $\left[\operatorname{Fe}^{2+}\right] = 8.39 \times 10^{-3} \mathrm{M}$
 $\left[\operatorname{F}^{-}\right] = 1.68 \times 10^{-2} \mathrm{M}$

140. Volume $AgNO_3$ used = 37.15 mL - 5.15 mL = 32.00 mL

mol Ag⁺ = 0.125 mol/L × 0.03200 L
= 0.00400 mol
mol Cl⁻ = mol Ag⁺
= 0.00400 mol
$$[Cl^{-}] = \frac{0.00400 \text{ mol}}{0.02000 \text{ L}}$$

= 0.200 M

141. $\operatorname{CuI}_{(s)} \rightleftharpoons \operatorname{Cu}^{+}_{(aq)} + \operatorname{I}^{-}_{(aq)}$ $\operatorname{K}_{sp} = \left[\operatorname{Cu}^{+}\right] \left[\operatorname{I}^{-}\right] = 1.3 \times 10^{-12}$ $\left[\operatorname{I}^{-}\right] = \frac{\operatorname{K}_{sp}}{\left[\operatorname{Cu}^{+}\right]} = \frac{1.3 \times 10^{-12}}{0.010} = 1.3 \times 10^{-10} \,\mathrm{M}$ $= \left[\operatorname{NaI}\right]$ mass of NaI = $1.3 \times 10^{-1} \,\mathrm{mol/L} \times \frac{149.9 \,\mathrm{g}}{\mathrm{mole}} \times 0.250 \,\mathrm{L}$

$$= 4.9 \times 10^{-9} \,\mathrm{g}$$

142. a) $Ca_{(aq)}^{2+} + CO_{3(aq)}^{2-} \rightarrow CaCO_{3(s)}$

b) Addition of HCl provides $H^+_{(aq)}$ which reacts with the $CO_3^{2-}_{(aq)}$.

$$\mathrm{H^{+}_{(aq)} + \mathrm{CO}_{3\,(aq)}^{2-} \rightarrow \mathrm{HCO}_{3\,(aq)}^{-}}$$

This reduces the $\left[CO_{3}^{2-}_{(aq)} \right]$ in the solubility equilibrium,

$$\operatorname{CaCO}_{3(s)} \rightleftharpoons \operatorname{Ca}^{2+}_{(aq)} + \operatorname{CO}^{2-}_{3(aq)}$$

causing more solid to dissolve to offset the stress caused by the reduction in concentration.

143. a)
$$Pb_{(aq)}^{2+} + 2Cl_{(aq)}^{-} \rightarrow PbCl_{2(s)}$$

b) $[Pb^{2+}] = 0.050 \text{ M} \times \frac{15.0 \text{ mL}}{50.0 \text{ mL}} = 0.015 \text{ M}$
 $[Cl^{-}] = 0.085 \text{ M} \times \frac{35.0 \text{ mL}}{50.0 \text{ mL}} = 0.0595 \text{ M}$
Trial $K_{sp} = [Pb^{2+}][Cl^{-}]^{2} = (0.015)(0.0595)^{2} = 5.3 \times 10^{-5}$
 K_{sp} for $PbCl_{2} = 1.2 \times 10^{-5}$

Since Trial $K_{sp} > K_{sp}$, a precipitate does form.

144.
$$\operatorname{Ag}_{2}\operatorname{SO}_{4(s)} \rightleftharpoons 2\operatorname{Ag}_{(aq)}^{+} + \operatorname{SO}_{4(aq)}^{2-}$$

 $\left[\operatorname{Ag}_{2}\operatorname{SO}_{4}\right] = \frac{7.2 \times 10^{-4} \text{ g}}{0.0500 \text{ L}} \times \frac{1 \text{ mole}}{311.9 \text{ g}} = 4.62 \times 10^{-5} \text{ M}$
 $\left[\operatorname{Ag}^{+}\right] = 2 \times 4.62 \times 10^{-5} \text{ M} = 9.23 \times 10^{-5} \text{ M}$
 $\left[\operatorname{SO}_{4}^{2-}\right] = 4.62 \times 10^{-5} \text{ M}$
 $\operatorname{K}_{sp} = \left[\operatorname{Ag}^{+}\right]^{2} \left[\operatorname{SO}_{4}^{2-}\right]$
 $= \left(9.23 \times 10^{-5}\right)^{2} \left(4.62 \times 10^{-5}\right)$
 $= 3.9 \times 10^{-13}$

$$K_{sp} = [Pb^{2+}][Cl^{-}]^{2}$$
$$1.2 \times 10^{-5} = (0.50)[Cl^{-}]^{2}$$
$$[Cl^{-}] = 4.90 \times 10^{-3} M$$

In 250 mL:

moles $Cl^- = 4.90 \times 10^{-3} \text{ mol/L} \times 0.25 \text{ L} = 1.22 \times 10^{-3} \text{ mol } Cl^$ moles $BaCl_2 = \frac{1}{2} \text{ mol } Cl^ = \frac{1}{2} \times 1.22 \times 10^{-3} \text{ mol}$ $= 6.12 \times 10^{-4} \text{ mol}$ Mass $BaCl_2 = 6.12 \times 10^{-4} \text{ mol} \times \frac{208.3 \text{ g}}{1 \text{ mol}}$ $= 0.13 \text{ g } BaCl_2$

146. a)
$$\operatorname{Ba}_{(aq)}^{2+} + \operatorname{SO}_{4(aq)}^{2-} \to \operatorname{BaSO}_{4(s)}$$
 b) $\left[\operatorname{SO}_{4}^{2-}\right] = \frac{K_{sp}}{\left[\operatorname{Ba}^{2+}\right]}$
 $= \frac{1.1 \times 10^{-10}}{0.10}$
 $= 1.1 \times 10^{-9} \,\mathrm{M}$

147.
$$Ag_{2}CrO_{4(s)} \rightleftharpoons 2Ag_{(aq)}^{+} + CrO_{4(aq)}^{2-}$$
$$K_{sp} = [Ag^{+}]^{2} [CrO_{4}^{2-}] = 1.1 \times 10^{-12}$$
$$[CrO_{4}^{2-}] = 0.10M$$
$$[Ag^{+}]^{2} = \frac{1.1 \times 10^{-12}}{0.10}$$
$$[Ag^{+}] = 3.3 \times 10^{-6} M$$
Mass of $AgNO_{3} = 3.3 \times 10^{-6} \frac{mol}{L} \times 2.0L \times \frac{169.9 g}{1 mol}$
$$= 1.1 \times 10^{-3} g$$

148. a) Add solute to solvent until no more solute dissolves.

b)
$$\operatorname{Be}_{3}(\operatorname{PO}_{4})_{2(s)} \rightleftharpoons \operatorname{3Be}^{2+}_{(aq)} + 2\operatorname{PO}_{4(aq)}^{3-}_{(aq)}$$

149.
$$\operatorname{Cu}(\operatorname{IO}_{3})_{2(s)} \rightleftharpoons \operatorname{Cu}^{2+}_{(aq)} + 2\operatorname{IO}_{3(aq)}^{-}$$

 $\operatorname{K}_{sp} = \left[\operatorname{Cu}^{2+}\right] \left[\operatorname{IO}_{3}^{-}\right]^{2} = 6.9 \times 10^{-8}$
 $6.9 \times 10^{-8} = (x)(2x)^{2}$
 $4x^{3} = 6.9 \times 10^{-8}$
 $x = 2.6 \times 10^{-3} \text{ M}$
 $\left[\operatorname{IO}_{3}^{-}\right] = 2 \times 2.6 \times 10^{-3} \text{ M}$
 $= 5.2 \times 10^{-3} \text{ M}$