Chemistry 11 Stoichiometry Review Assignment

Name:
Date:
Block: \qquad

Answer the following practice questions on a separate page

Define the following terms:

1. Stoichiometry
2. Stoichiometric ratio
3. Limiting reactant
4. Excess reactant
5. Percent yield

(Mole-Mole Conversions)

6. The combustion of the organic fuel, decane, is outlined in the chemical equation below. You must balance the equation in order to answer the subsequent questions a-c.

$$
\mathrm{C}_{10} \mathrm{H}_{22}+\ldots \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

a. How many moles of CO_{2} are produced if 5.0 moles of $\mathrm{C}_{10} \mathrm{H}_{22}$ react with an excess of O_{2} ?
b. How many moles of O_{2} react with 0.75 moles of $\mathrm{C}_{10} \mathrm{H}_{22}$?
c. How many moles of O_{2} would be required to produce 4.0 moles of $\mathrm{H}_{2} \mathrm{O}$?
7. Use the following equation to solve the problems below:

$$
3 \mathrm{SiO}_{2}+4 \mathrm{Al} \longrightarrow 3 \mathrm{Si}+2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

a. If 6.0 moles of SiO_{2} react, how many moles of:
i. Al react?
ii. Si are produced?
iii. $\mathrm{Al}_{2} \mathrm{O}_{3}$ are produced?
b. If 2.5 moles of $\mathrm{Al}_{2} \mathrm{O}_{3}$ are produced, how many moles of:
i. Al react?
ii. SiO_{2} react?

(Mole-Mass / Mass-Mole Conversions)

8. $\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}_{4}$
a) If 15.0 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ was produced, how many moles of O_{2} were required?
b) If 4.0×10^{-3} moles of oxygen reacted, how many grams of N_{2} were needed?
9. $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}$ How many moles of Cu are needed to react with 3.50 g of AgNO_{3} ?
10. Mercury (II) oxide decomposes into mercury and oxygen gas.
a) Write and balance the equation.
b) How many moles of mercury (II) oxide are needed to produce 125 g of oxygen?
c) How many grams of mercury are produced if 24.5 moles of mercury (II) oxide decomposes?

(Mass-Mass Conversions)

11. $\mathrm{Li}_{3} \mathrm{~N}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{NH}_{3(\mathrm{~g})}+3 \mathrm{LiOH}_{(\mathrm{aq})}$
a. What mass of lithium hydroxide are produced when 0.38 g of lithium nitride react?
b. How many grams of lithium nitride would react with 4.05 g of $\mathrm{H}_{2} \mathrm{O}$?
12. In the combustion of 54.50 g of butane $\left(\mathrm{C}_{4} \mathrm{H}_{6}\right)$, how many grams of CO_{2} are produced? Write and balance the equation before solving.
13. In the following unbalanced equation,
$\ldots \mathrm{FeS}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{Fe}_{2} \mathrm{O}_{3}+\ldots \mathrm{SO}_{2}$
a. How many grams of iron (IV) sulphide are used when 9.0 g of O_{2} react?
b. What is the mass of iron (III) oxide produced when 25.0 g of iron (IV) sulphide are used?
14. $\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$

How many grams of silver are produced when 36.92 g of copper react?
15. \qquad $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \ldots \mathrm{Al}(\mathrm{OH})_{3}+\ldots \mathrm{CaSO}_{4}$
Balance and answer the following questions.
a. What mass of aluminum (III) hydroxide are produced if 165.7 g of aluminum (III) sulfate react?
b. How many grams of calcium hydroxide are needed to form 6.35 g of calcium sulphate?

(Mass- Volume/ Volume-Volume Conversions)

16. Given the following equation:
$3 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow 2 \mathrm{HNO}_{3(\mathrm{aq})}+\mathrm{NO}_{(\mathrm{g})}$ Assume STP
a. What mass of water is required to react with 15.5 L of Nitrogen dioxide?
b. What volume of Nitrogen monoxide would be produced from 100.0 g of water?
c. If 42.0 L of $\mathrm{NO}_{(\mathrm{g})}$ is produced, what volume of $\mathrm{NO}_{2}(\mathrm{~g})$ reacted?
17. When Magnesium reacts with Nitric Acid, Hydrogen gas and aqueous Magnesium nitrate are formed. What volume of Hydrogen gas will be produced if 40.0 g of Magnesium is reacted with an excess of Nitric Acid?
18. The corrosion (rusting) of iron is represented as follows: (at STP)

$$
3 \mathrm{O}_{2(\mathrm{~g})}+4 \mathrm{Fe}_{(\mathrm{s})} \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}
$$

a. What volume of Oxygen gas would be required to produce 16.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
b. What mass of Iron would be required to react with 10.0 L of O_{2} gas?
19. Mercury (II) oxide decomposes when heated to produce liquid Mercury and Oxygen gas. What mass of Mercury (II) oxide would be required to produce 30.5 L of Oxygen gas? (Assume STP)
20. How many mL of 2.00 M HNO3 is needed to consume 5.4 g of aluminum?

$$
2 \mathrm{Al}+6 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{Al}\left(\mathrm{HNO}_{3}\right)_{3}+3 \mathrm{H}_{2}
$$

21. 20 mL of HCl is needed to consume 2.8 g Fe . What is the concentration of HCl ?
$\ldots \mathrm{Fe}+\ldots \mathrm{HCl} \rightarrow \ldots \mathrm{FeCl}_{3}+\ldots \mathrm{H}_{2}$
22. What mass of copper will react with 10.0 mL of 12.0 M nitric acid?

$$
\mathrm{Cu}+\ldots \mathrm{HNO}_{3} \rightarrow \ldots \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \mathrm{NO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

REVIEW: Limiting Reagents and Percent Yield

Answer all questions on separate paper and report all answers to the correct number of sig \square figs.

1. Identify the limiting reactant when $1.22 \mathrm{~g}^{\text {of }} \mathrm{O}_{2}$ reacts with 1.05 g of H_{2} to produce water.
2. Identify the limiting reactant when 5.87 g of $\mathrm{Mg}(\mathrm{OH})_{2}$ reacts with 12.84 g of HCl to form MgCl_{2} and water.
3. Identify the limiting reactant when 6.33 g of sulphuric acid reacts with 5.92 g of sodium hydroxide to produce sodium sulphate and water.
4. Identify the reactant in excess if 6.25 g of silver nitrate reacts with 4.12 g of sodium chloride to form sodium nitrate and silver chloride.
5. If 4.1 g of Cr is heated with 9.3 g of Cl_{2} what mass of CrCl_{3} will be produced?
6. What mass of sulphur trioxide is produced when 12.4 g of sulphur dioxide is reacted with 3.45 g of oxygen gas?
7. If 21.4 g of aluminum is reacted with 91.3 g of iron (III) oxide, the products will be aluminum oxide and iron. What mass of iron will be produced?
8. If 41.6 g of $\mathrm{N}_{2} \mathrm{O}_{4}$ reacts with 20.8 g of $\mathrm{N}_{2} \mathrm{H}_{4}$, the products will be nitrogen gas and water. What mass of nitrogen will be produced?
9. What mass of NaCl will be produced by the reaction of 58.7 g of NaI with $29.4 \mathrm{~g}_{\mathrm{g}}$ of Cl_{2} ?
10. a. Write the balanced equation for the reaction of lead (II) nitrate with sodium iodide to form sodium nitrate and lead (II) iodide:
b. If I start with 25.0 grams of lead (II) nitrate and 15.0 grams of sodium iodide, how many grams of sodium nitrate can be formed?
c. What is the limiting reagent in the reaction?
d. How much of the excess reagent will be left over from the reaction?
11. You calculate that using a certain amount of beryllium and hydrochloric acid you can produce 10.7 g of beryllium chloride. You perform the experiment and only collect 4.5 g . What was the percent yield for the reaction?
12. Determine the percent yield for the reaction between 45.9 g of NaBr and excess chlorine gas to produce 12.8 g of NaCl and an unknown quantity of bromine gas.
13. Determine the percent yield for the reaction between 44.5 g of zinc sulphide and 13.3 g of oxygen, if 18.4 g of zinc oxide is recovered with an unknown amount of sulphur dioxide.
14. A reaction was carried out according to the following equation:

$$
\mathrm{FeBr}_{2}+2 \mathrm{KCl} \rightarrow \mathrm{FeCl}_{2}+2 \mathrm{KBr}
$$

a. What is the theoretical yield of iron (II) chloride if 34.00 grams of iron (II) bromide was used in the reaction with excess potassium chloride?
b. What is the percent yield of iron (II) chloride if the actual yield is 4.00 grams?
15. a. What mass of $\mathrm{CS}_{2(s)}$ is produced when $17.5{\mathrm{~g} \text { of } \mathrm{C}_{(s)} \text { are reacted with } 39.5 \mathrm{~g} \text { of } \mathrm{SO}_{2(g)}, ~(g)}$ according to the equation: $5 \mathrm{C}_{(s)}+2 \mathrm{SO}_{2(g)} \rightarrow \mathrm{CS}_{2(s)}+4 \mathrm{CO}_{(g)}$?
b. What mass of the excess reactant will be left over?
16. If 0.250 g of $\mathrm{Ba}(\mathrm{OH})_{2(s)}$ is mixed with 15.0 mL of $0.125 \mathrm{M} \mathrm{HBr}_{(a q)}$, what mass of $\mathrm{BaBr}_{2(a q)}$ can be formed?

$$
\mathrm{Ba}(\mathrm{OH})_{2(s)}+2 \mathrm{HBr}_{(a q)} \rightarrow \mathrm{BaBr}_{2(a q)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

17. The reaction $\mathrm{SiO}_{2(s)}+4 \mathrm{HF}_{(g)} \rightarrow \mathrm{SiF}_{4(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}$ produces 2.50 g of $\mathrm{H}_{2} \mathrm{O}_{(g)}$ when 12.20 g of $\mathrm{SiO}_{2(s)}$ is treated with a small excess of $\mathrm{HF}_{(\mathrm{g})}$.
a. What mass of $\mathrm{SiF}_{4(\mathrm{~g})}$ is formed?
b. What mass of $\mathrm{SiO}_{2(s)}$ is left unreacted if only 2.50 g of $\mathrm{H}_{2} \mathrm{O}$ is formed?
c. What is the percent yield of the $\mathrm{H}_{2} \mathrm{O}_{(g)}$?
