Chemistry 11 -Course Review
[\quad 2 -Introduction to Chemistry

1. $0.0006 \mathrm{~mm}=$? $\mu \mathrm{m}$

$$
\begin{aligned}
& 6 \times 10^{-4} \mathrm{mmx} \frac{10^{-3} \mathrm{~m}}{1 \mathrm{~mm}} \times \frac{1 \mu \mathrm{~m}}{10^{-6} \mathrm{~m}} \quad \begin{array}{l}
\text { Answer }-0.6 \mu \mathrm{~m} \\
\text { 2. } 0.054 \mathrm{~mL}=? \mathrm{~nL} \\
5.4 \times 10^{-2} \mathrm{~mL} \times \frac{10^{-3 \mathrm{~L}}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~nL}}{10^{-9} \mathrm{~L}} \text { Answer } 5.4 \times 10^{4} \mathrm{~nL}
\end{array}
\end{aligned}
$$

3. $3.5 \mu \mathrm{~g} / \mathrm{L}=? \mathrm{mg} / \mathrm{mL}$

$$
\frac{3.5 \mu \mathrm{~g}}{\mathrm{~L}} \times \frac{10^{-6} \mathrm{~g}}{1 \mu \mathrm{~g}} \times \frac{1 \mathrm{mg}}{10^{-3} \mathrm{~g}} \times \frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}
$$

4. The density of iron is $7860 \mathrm{~g} / \mathrm{L}$. Calculate the mass of a 3.2 mL sample of iron.

$$
0.0032 L \times \frac{7860 \mathrm{~g}}{L}
$$

5. Manganese has a density of $7.20 \mathrm{~g} / \mathrm{mL}$. Calculate the volume occupied by a 4.0 kg piece of manganese.

$$
V=\frac{m}{D}=\frac{4000 \mathrm{~g}}{7.20 \mathrm{glmL}}=555.56
$$

6. A 0.0460 L piece of copper has a mass of 410.32 g . Calculate the density of copper in g / mL.

$$
D=\frac{m}{V}=\frac{410.32 \mathrm{~g}}{46 \mathrm{~mL}}=8.92 \mathrm{~g} / \mathrm{m} L_{\text {Answer }}
$$

7. Give the number of significant digits in each of the following. Assume they are all measurements.
a) 0.0023 \qquad d) 3.2×10^{-4} \qquad
b) 3953000 \qquad
\qquad e) 50020.000 \qquad
\qquad
c) 1.0200×10^{5} \qquad f) 3450 \qquad
8. Perform the following calculations and round the answers off to the correct number of significant digits as justified by the data. Assume all numbers are measurements.
a) 2.1500×0.31 \qquad f) $8.90 \times 10^{3} \div 4.400 \times 10^{-6}$ \qquad
b) $0.05+394.7322$ \qquad 394.78
g) $83.00 \div 1.2300 \times 10^{2}$ \qquad
c) $4.905 \times 10^{6} \div 4 \times 10^{-2} \ldots 1 \times 10^{8}$
h) $98.0076-2.195$ \qquad
d) $(3.33 \times 9.52)+13.983 .$. \qquad 45.7
i) $0.00000200 \times 245.912$ \qquad
\qquad
e) $3.813+98.98+2.669$. \qquad 105.46
j) $5.802 \div 6.21+2.41 \div 9.2565$ \qquad
9. Round the following numbers to 2 significant digits. (4 marks)
a) 2000000000 \qquad 2.0×10^{9}
c) 3.88945×10^{28} \qquad
b) 106000 \qquad d) 0.0000007895 7.9×10^{-7}

Unit 3-Properties of Matter
1 Draw the diagram from your notes outlining the Classification of Matter. Make sure you can define each classification.

ANSWER KEY

Chemistry 11

1. Identify the following as either an alkane, alkene or alkyne.
a. alkene
b. alkane
c. alkyne
d. alkyne
e. alkane
2. Identify which class of organic compounds each of the following belongs to: halocarbon, alcohol, ether, aldehyde, ketone, carboxylic acid, ester, amine, amide, alkane, alkene, or alkyne. Name each compound.
a. Ketone; 4,4-dimethyl-2-pentanone
b. Halocarbon; 3,3-dibromo-2,2-dichlorohexane
c. Alkyne; 4-2-ethyl-7-methyl-2-octyne
d. Alkane; 3,4-dimethylhexane
e. Carboxylic acid; methylpropanoic acid
f. Ester; methylhexanoate
g. Alkane; 7-ethyl-3-methyldecane
h. Alkene; 4,4,-dimethyl-1-pentene
i. Ketone; propanone
j. Alcohol; 2-pentanol
k. Ester; ethylbutanoate
I. Carboxylic acid; propanoic acid
m. Aldehyde; propanal
n. Aldehyde; 2-methylbutanal
o. Cyclic hydrocarbon; 1,3,-diethyl-6,8-dimethylcyclononane
p. Cyclic halocarbon; 1,4-dichloro-2,3-diethylcyclopentane
q. Amine; trimethylamine
r. Amide; propanamide
s. Ether; 1-propoxypropane

3.ANSWERS ON THE FOLLOWING PAGE

\#3 a, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}_{-2 \mathrm{O}}^{2 \mathrm{O}}$
b. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$
C.

e.

f.

g

h.
d.

i. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{1}=\mathrm{CH}-\mathrm{CH}_{3}$
j

K. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{3}-\mathrm{C}-\mathrm{CH}_{3}$
1.

m.

n.

0.

p.

q

$$
\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{C}-\mathrm{C}_{3}-\mathrm{CH}_{2} \mathrm{O}
$$

r.
$\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CH}_{3}$

$$
\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CH}_{3}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{O}
$$

5.

U.

V. $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
W.

x.

2. Defineaphysiaarchange- Change where chemical make up does not change
Give some examples of physical changes.
Rip paper
3. Define a chemical change -
new substance is formed
Give some examples of chemical changes.
burning; cooking; neutralization
4. Given the following graph of Temperature vs. Time for warming substance " X " which starts out as a solid, answer the questions below:

a) During time $0.0-5.0$ minutes, the added heat energy is being used to
incr. temp of solid
b) During time $5.0-15.0$ minutes, the added heat energy is being used to break bonds holding together solid
c) During time 15.0-20.0 minutes, the added heat energy is being used to increase T of liquid
d) During time 20.0-28.0 minutes the added heat energy is being used to ! break bonds of liquid
e) The melting point of substance " X " is $\frac{43^{\circ} \mathrm{C}}{77^{\circ} \mathrm{C}}$
f) The boiling point of substance " X " is
g) If a greater amount of substance " X " was used, the melting point would be 1. a lower temperature
2. a higher temperature
3. the same temperature
Answer
\qquad
Wi What phase is substance "x" at $90^{\circ} \mathrm{C}$? \qquad Gas

Unit 4-Names and Formulas for Compounds

1. Write the correct formula for the following compounds:
a) ammonium chlorate \qquad

2. Write the correct names for the following compounds:
a) $\mathrm{Mn}\left(\mathrm{SO}_{4}\right)_{2}$.

Manganese (IV) Sulphate
b) $\mathrm{PbCrO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ \qquad lead (II) chromate hexahydrate
diarsenic trioxide
c) $\mathrm{As}_{2} \mathrm{O}_{3}$ \qquad
d) $\mathrm{CH}_{3} \mathrm{COOH}$ \qquad
\qquad Acetic Acid acid
e) $\mathrm{Ni}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}$ \qquad nickel (III) oxalate
f) NF_{3} \qquad nitrogen trifluaride.
g) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ \qquad Ammonium monohydvogen phosphate
h) $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ Barium hydroxide decahydrate

Unit 5- The Mole Concept

1. Make the following conversions, clearly showing your steps. Include proper units in all of your work and in your answer.
a) 133.44 grams of $\mathrm{PCl}_{5}=$? moles

$$
133.44 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{208.5 \mathrm{~g}}
$$

\qquad
d)

$$
570.625 \mathrm{~g} \times \frac{\operatorname{lnol}}{\mathrm{B7} .5 \mathrm{~g}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=
$$

e) $\quad 1030.4 \mathrm{~mL}$ of $\mathrm{C}_{2} \mathrm{H}_{6}$ gas at $\mathrm{STP}=? \mathrm{~g}$

$$
1.0304 \mathrm{~L} \times \frac{1 \mathrm{~mol}}{22.4 \mathrm{~L}} \times \frac{30.0 \mathrm{~g}}{1 \mathrm{~mol}}
$$

Answer - 1.38
f) 5.00 kg of nitrogen gas $=$? L (STR)

$$
5000 \mathrm{~g} x \frac{\mid \mathrm{mol}}{28.0 \mathrm{~g}} \times \frac{22.4 \mathrm{~L}}{\mid \mathrm{mol}}
$$

Answer $4000 . L$
g) $\quad 0.5696 \mathrm{~kg}$ of $\mathrm{CH}_{4(\mathrm{~g})}=$? mL

$$
\begin{array}{r}
0.5696 \mathrm{~kg}=569.6 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{16.0 \mathrm{~g}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}} \times \frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}} \\
\text { Answer } \quad 7.97 \times 10^{5} \mathrm{~mL}
\end{array}
$$

2. The density of liquid ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ is $0.790 \mathrm{~g} / \mathrm{mL}$. Calculate the number of molecules in a 35.0 mL . sample of liquid ethanol. (NOTE: You CAN'T use $22.4 \mathrm{~L} / \mathrm{mol}$ since this is NOT a gas at STP!)

$$
\begin{array}{r}
\frac{0.790 \mathrm{~g}}{m L^{2}} \times 35 \mathrm{ngL}=27.65 \mathrm{~g} \times \frac{\mathrm{mol}}{469} \times \frac{6.022 \times 10^{23} \mathrm{molec}}{1 \mathrm{~mol}} \\
=3.62 \times 10^{23} \mathrm{molec}
\end{array}
$$

7.... A compound was analyzed and the following results were obtained:

Molar mass: $270.4 \mathrm{~g} / \mathrm{mol}$
Mass of sample: 162.24 g
Mass of potassium: 46.92 g
Mass of sulphur: 38.52 g
Mass of oxygen: the remainder of the sample is oxygen
a) Determine the mass of oxygen in the sample.

$$
162.24 g-46.92-38.52
$$

b) Determine the empirical formula for this compound.
k. $\frac{46.92}{16224} \times 100 \% \times \frac{\operatorname{ln20}}{39 . \lg }=1.20 \div 1.2=1$
$S \frac{38.52}{16224} \times 100 \% \times \frac{1 \mathrm{~mol}}{32.1 \mathrm{~g}}=12 \div 1.2=1$
$0 \frac{76.8}{162.24} \times 1001 \times \frac{\operatorname{lmol}}{16 g}=4.8 \div 1.2=4$
Answer: Empirical Formula: \qquad
c) Determine the molecular formula for this compound.

$$
\frac{M F}{E F}=\frac{270.4 \mathrm{~g} / \mathrm{mol}}{135.2 \mathrm{~g} / \mathrm{mol}}=2 \times \mathrm{KSO}_{4}
$$

Answer: Molecular Formula: \qquad $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
8. $\quad 123.11 \mathrm{~g}$ of zinc nitrate, $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ are dissolved in enough water to form 650.0 mL of solution. Calculate the $\left.\left[\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\right]\right)$ Include proper units in your work and in your answers.

$$
123.11 \mathrm{gx} \times \frac{1 \mathrm{~mol}}{189.4 \mathrm{~g}}=0.65 \mathrm{~mol}
$$

$$
\left[2 n\left(\mathrm{NO}_{3}\right)_{2}\right]=\frac{0.65 \mathrm{~mol}}{0.65 \mathrm{~L}}
$$

Answer \qquad 1.000 m

9:- Calculate the mass of potassium sulphate $\left(\mathrm{K}_{2} \mathrm{SO}_{3}\right)$ needed to make 800.0 mL of a 0.200 M solution of $\mathrm{K}_{2} \mathrm{SO}_{3}$: Include proper units in your work and in your answers.

$$
\frac{0.200 \mathrm{~mol}}{K} \times 0.800 \mathrm{~K}=0.160 \mathrm{~mol} \times \frac{158.3 \mathrm{~g}}{1 \mathrm{~mol}}
$$

Answer \qquad 25.328 g
10. What volume of $2.50 \mathrm{M} \mathrm{Li}_{2} \mathrm{CO}_{3}$ would need to be evaporated in order to obtain 47.232 g of solid $\mathrm{Li}_{2} \mathrm{CO}_{3}$? Include proper units in your work and in your answers.

$$
47.232 \mathrm{~g} \times \frac{\mathrm{mol}}{73.8 \mathrm{~g}}=0.64 \mathrm{~mol}^{2}
$$

(俞 $V=\frac{0.64 \mathrm{~mol}}{2.50 \mathrm{~m}}=$, \qquad
11. 150.0 mL of water are added to 400.0 mL of $0.45 \mathrm{M} \mathrm{HNO}_{3}$. Calculate the final $\left[\mathrm{HNO}_{3}\right]$. Include proper units in your work and in your answers.

$$
\begin{gathered}
m_{1} v_{1}=m_{2} v_{2} \\
m_{2}=\frac{(0.45 \mathrm{~m})(400 \mathrm{~mL})}{(\sqrt{5} 50 \mathrm{~mL})}=
\end{gathered}
$$

$$
\text { Answer } 0.327 \mathrm{~m}
$$

12. What volume of water needs to be added to 150.0 mL of $4.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ in order to bring the concentration down to 2.50 M ? Include proper units in your work and in your answers.

$$
\begin{aligned}
& m_{1} v_{1}=m_{2} v_{2} \\
& \frac{(4.00 \mathrm{~m})(150 \mathrm{~mL})}{(2.50 \mathrm{~m})} \rightarrow v_{2}=240 \mathrm{~mL}-150 \mathrm{~mL}
\end{aligned}
$$

Unit 6-Chemical Reactions

1. Balance the following equations

$$
\begin{aligned}
& 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \\
& 3\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{AlCl}_{3} \rightarrow \mathrm{Al}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}+6 \mathrm{NH}_{4} \mathrm{Cl} \\
& 2 \mathrm{CiH}_{31}+4 \mathrm{H}_{3} \rightarrow 28 \mathrm{CO}_{2}+30 \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{Fe}+6 \mathrm{NOO}_{3} \rightarrow 2 \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{H}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}_{4}+{ }^{6} \mathrm{Cl}_{2} \rightarrow 4 \mathrm{PCl}_{3} \\
& \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}^{2}+2 \mathrm{CrCl}_{3}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cl}_{2} \\
& 2 \mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2} \rightarrow \mathrm{Ba}+\mathrm{Cl}_{2}+4 \mathrm{O}_{2} \\
& 2 \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{OH}+21 \mathrm{O}_{2} \rightarrow 14 \mathrm{CO}_{2}+16 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{MgSO}_{4} 5 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

2. Write a balanced chemical equation for each of the following, and classify each as synthesis, decomposition, single replacement, double replacement, neutralization or combustion.
a) potassium sulphate is mixed with cobalt (III) nitrate

$$
3 \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{Co}_{(}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow \mathrm{CO}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{KNO}_{3} \text { (DR }
$$

b) liquid propanol $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right)$ is burred in air

$$
2 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}+9 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O} \quad \text { (combustion) }
$$

c) ammonium nitrate is decomposed into it's elements
$2 \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow 2 \mathrm{~N}_{2}+4 \mathrm{H}_{2}+3 \mathrm{O}_{2}$ (decomposition)
d) a piece of zinc is placed in a test-tube containing a solution of silver nitrate

$$
\underset{\text { Bn }}{\text { bromine treats will sodium iodide }}+2 \mathrm{Ag}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \quad(S . R .)
$$

e) bromine reacts with sodium iodide

$$
\mathrm{Br}_{2}+2 \mathrm{NaI} \rightarrow I_{2}+2 \mathrm{NaBr} \quad \text { (SR.) }
$$

f) bromine reacts with aluminum

$$
\begin{aligned}
& 3 \mathrm{Br}_{2}+2 \mathrm{Al} \rightarrow 2 \mathrm{AlBr}_{3} \quad \text { (synthesis) }
\end{aligned}
$$

g) rubidium reacts with chlorine gas

$$
2 \mathrm{Rb}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{RbCl}_{2} \quad(\text { Synth.) }
$$

h) hydrochloric acid reacts with strontium hydroxide
$\underset{\text { there each of the following are exothermic or endothermic. }}{2+\mathrm{Sr}} \underset{2}{ } \mathrm{SrCl}_{2}$ (neutral
3. State whether each of the following are exothermic or endothermic.

$$
\begin{aligned}
& \mathrm{HCl}+432 \mathrm{~kJ} \rightarrow \mathrm{H}+\mathrm{Cl} \\
& \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O} \\
& \cdot \\
& \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
\end{aligned}
$$

Answer undo
$\Delta H=-5638 \mathrm{~kJ}$ Answer $e x \bigcirc$

$$
\begin{array}{ll}
C D \rightarrow C+D & \Delta H=65.7 \mathrm{~kJ} \\
\mathrm{E}+\mathrm{F}+437 \mathrm{~kJ} \rightarrow \mathrm{G}+\mathrm{H}
\end{array} \quad \text { Answer } \begin{aligned}
& \text { end }
\end{aligned}
$$

4. Given the equation: $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+12 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+11 \mathrm{H}_{2} \mathrm{O}+5638 \mathrm{~kJ}$
a. How much heat is released during the formation of $880.0 \mathrm{~g}_{\mathrm{g}} \mathrm{CO}_{2}$?

$$
880.0 \times \frac{1 \text { molkoz }}{44 \mathrm{gcoz}} \frac{5638 \mathrm{~kJ}}{12 \mathrm{~mol}} \quad \text { Answer } \quad 9396.67 \mathrm{~kJ}
$$

b. How much heat is released during the formation of 5.6 moles of $\mathrm{H}_{2} \mathrm{O}$?

$$
5.6 \mathrm{molH} \mathrm{H}_{2} \times \frac{5638 \mathrm{K5}}{12 \mathrm{molH} \mathrm{H}_{\mathrm{m}}} \quad \begin{array}{r}
2870.25 \mathrm{kser} \\
3750,67 \mathrm{~kJ}
\end{array}
$$

c. If 179.2 L of $\mathrm{O}_{2}(\mathrm{STP})$ are consumed, how much heat is released?

$$
1792 L \times \frac{\operatorname{mmol~}_{2}}{22.44} \times \frac{5638 \mathrm{ks}}{12 \mathrm{molO}_{2}} \text { answer } 328 \mathrm{la} \mathrm{R}
$$

5. Calculate the amsint of heat (in Joules) required to warm 200.0 g of water from $8.0^{\circ} \mathrm{C}$ to $45.0^{\prime \prime} \mathrm{C}$. (Heat Capacity (C) for $\mathrm{H}_{2} \mathrm{O}$ is $4180 . \mathrm{J}^{\prime} \mathrm{kg}{ }^{\circ} \mathrm{C}$)

$$
\begin{aligned}
E & =m c \Delta T \\
& =(0.200 \mathrm{~kg})(4180)\left(37^{\circ} \mathrm{C}\right) \\
& =\quad \text { Answer } 30932 \mathrm{~J}
\end{aligned}
$$

6. $\quad 13.376 \mathrm{~kJ}$ of heat are added to a 400.0 gram sample of water initially at $4.0^{\circ} \mathrm{C}$. Calculate the final temperature of the water sample. Be careful with units! (Heat Capacity (C) for $\mathrm{H}_{2} \mathrm{O}$ is $4180 \mathrm{~J} / \mathrm{kg}{ }^{-}{ }^{\circ} \mathrm{C}$)

$$
\begin{aligned}
& E=m c \Delta T \\
& 13376 J=(0.4 \mathrm{~kg})(4180) \Delta T \\
& \Delta T=8^{\circ} \mathrm{C} \\
& \text { Final }=4^{\circ} \mathrm{C}+8^{\circ} \mathrm{C}
\end{aligned}
$$

Dilutions

Answers :

1) $\left[\mathrm{H}^{+}\right]=0.50 \mathrm{M} \quad\left[\mathrm{Cl}^{-}\right]=0.50 \mathrm{M}$
2) $\left[\mathrm{H}^{+}\right]=6.00 \mathrm{M} \quad\left[\mathrm{SO}_{4}{ }^{2-}\right]=3.00 \mathrm{M}$
3) $\left[\mathrm{Na}^{+}\right]=4.61 \mathrm{M} \quad\left[\mathrm{PO}_{4}{ }^{3-}\right]=1.54 \mathrm{M}$
4) $\left[\mathrm{Cu}^{2+}\right]=0.0801 \mathrm{M}\left[\mathrm{SO}_{4}^{2-}\right]=.0801 \mathrm{M}$
5) a) 0.0625 mol NaOH
b) $0.0625 \mathrm{~mol} \mathrm{Na}^{+} \quad 0.0625 \mathrm{~mol} \mathrm{OH}^{-}$
6) a) $5.00 \times 10-4 \mathrm{~mol} \mathrm{CoCl}_{2}$
b) $5.00 \times 10-4 \mathrm{~mol} \mathrm{Co}^{2+} \quad 1.00 \times 10-3 \mathrm{~mol} \mathrm{Cl}-$
7) a) $1.71 \mathrm{~mol} \mathrm{H}_{3} \mathrm{PO}_{4}$
b) $5.12 \mathrm{~mol} \mathrm{H}+\quad 1.71 \mathrm{~mol} \mathrm{PO} 43-$
8) a) $5.79 \times 10-3 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}$
b) $5.79 \times 10-3 \mathrm{~mol} \mathrm{Ca}^{2+} \quad 1.16 \times 10-2 \mathrm{~mol} \mathrm{OH}^{-}$
9) a) $2.91 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
b) $[\mathrm{H}+]=5.81 \mathrm{M} \quad\left[\mathrm{SO}_{4}{ }^{2-}\right]=2.91 \mathrm{M}$
10) a) 2.44 M HCl
b) $[\mathrm{H}+]=2.44 \mathrm{M} \quad[\mathrm{Cl}-]=2.44 \mathrm{M}$
11) a) 0.667 M KOH
b) $[\mathrm{K}+]=0.667 \mathrm{M} \quad[\mathrm{OH}-]=0.667 \mathrm{M}$
12) a) $0.395 \mathrm{M} \mathrm{LiNO}_{3} \quad 1.51 \mathrm{M} \mathrm{FeCl}_{3}$
b) $[\mathrm{Li}+]=0.395 \mathrm{M}[\mathrm{NO} 3-]=0.395 \mathrm{M}$
$[\mathrm{Fe} 3+]=1.51 \mathrm{M} \quad[\mathrm{Cl}-]=4.54 \mathrm{M}$
13) $\quad 62.5 \mathrm{~mL}$ of 12.0 M HCl mixed with water to raise volume to 250.0 mL
14) 2.77 mL of $18.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ mixed with water to raise volume to 50.0 mL
15) 3.33 mL of $15.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ mixed with water to raise volume to 100.0 mL
16) 50.0 mL of $15.0 \mathrm{M} \mathrm{NH}_{3}$ mixed with water to raise volume to 500.0 mL

Unit 7-Stoichiometry

1. Given the following balanced equation, answer the questions following it:

$$
2 \mathrm{NF}_{3(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+6 \mathrm{HF}_{(\mathrm{g})}
$$

a) If 5.5 moles of H_{2} are reacted, how many moles of NF_{3} will be consumed?

$$
5.5 \text { mols } H_{2} \times \frac{2}{3}=
$$

Answer 3.67 mol
b) In order to produce 0.47 moles of HF , how many moles of NF_{3} would be consumed?

$$
0.47 \mathrm{~mol} \times \frac{2}{6}=
$$

Answer \qquad
c) If you needed to produce 180.6 g of N_{2}, how many moles of H_{2} would you need to start with?

$$
180.6 \mathrm{gx} \frac{\left|\mathrm{~mol}^{2}\right|}{28 \mathrm{~g}} \times \frac{3}{1}=
$$

$$
\text { Answer } \quad 19.35 \mathrm{mo} \mid
$$

d) If you completely react 17.04 g of NF_{3}, what mass of HF will be produced?

$$
17.04 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{7 \mathrm{~g}} \times \frac{6}{2} \times \frac{20.0 \mathrm{~g}}{1 \mathrm{~mol} 1}=1 \text { never }-14.4 \mathrm{~g}
$$

2. Given the following balanced equation, answer the questions following it:

$$
\mathrm{HBrO}_{3}+5 \mathrm{HBr} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+3 \mathrm{Br}_{2(\mathrm{~g})}
$$

a) If 3.56 moles of HBr are reacted, how many Litres of Br_{2} will be formed at STD?

$$
3.56 \mathrm{~mol} \times \frac{3}{5} \times \frac{22.4 \mathrm{~L}}{|\mathrm{~mol}|}=4 \text { answer }-47.85 \mathrm{~L}
$$

b) In order to produce 3.311×10^{24} molecules of Br_{2}, what mass of HBr is needed?

$$
3.311 \times 10^{24} \text { moles } \times \frac{\mid \text { moo } 1}{6.022 \times 10^{23}} \times \frac{5}{4} \times \frac{8099}{|m|}=
$$

4. Given the following balanced equation, answer the questions below it.

$$
\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})}+2 \mathrm{HNO}_{3(\mathrm{aq})} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}
$$

a) In a titration, 18.20 mL of $0.300 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$ is required to react completely with a 25.0 mL sample of a solution of HNO_{3}. Find the $\left[\mathrm{HNO}_{3}\right]$.

$$
\begin{align*}
& \text { mols } \mathrm{Ba}_{4}(\mathrm{OH})_{2}=\frac{0.300 \mathrm{mols}_{3}}{\mathrm{~K}} 0.0182 \mathrm{~K}=0.00546 \\
& \text { mols } \mathrm{HNO}_{3}=0.00546 \mathrm{~mol}^{2} \times \frac{2}{1}=0.01092 \\
& {\left[\mathrm{HNO}_{3}\right]=\frac{0.01092 \mathrm{~mol}^{2}}{0.0250 \mathrm{~L}}=0.437 \mathrm{~m}}
\end{align*}
$$

b) In a titration, 11.06 mL of $\left(0.200 \mathrm{M} \mathrm{HNO}_{3}\right.$ is required to react completely: with a sample of $0.250 \mathrm{M} \mathrm{Ba}(\mathrm{OH})_{2}$. Find the volume of the $\mathrm{Ba}(\mathrm{OH})_{2}$ sample

$$
\text { mols } \mathrm{HNO}_{3}=\frac{0.200 \mathrm{mols}_{*}}{\not /} 0.01106 \neq 0.002212 \mathrm{~mol}
$$

$$
\begin{gathered}
\operatorname{mols} B_{a}(\mathrm{OH})_{2}=0.002212 \times \frac{1}{2}=0.001106 \mathrm{mols} \\
0.001106 \text { mols }
\end{gathered}
$$

出 $V=\frac{0.001106 \mathrm{mols}}{0.250 \mathrm{~m}}=$ Answer $_{0.004424 \mathrm{~L}}^{0.012}$
5. Given the following balanced equation, answer the questions below it.

$$
3 \mathrm{Cu}_{(\mathrm{s})}+8 \mathrm{HNO}_{3(\mathrm{l})} \rightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{NO}_{(\mathrm{g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

a) If 317.5 grams of Cu are placed into 756.0 grams of HNO_{3}, determine which reactant is in excess.
$\mathrm{Cu} 317.5 \mathrm{~g} \times \frac{\mathrm{mol}}{63.5 \mathrm{~g}}=5.0 \underset{\mathrm{~mol}}{\mathrm{~mol}} \times \frac{2}{3} * \frac{30 \mathrm{~g}}{1 \mathrm{~mol}}=99.99$

b) If the reaction in (a) is carried out, what mass of NO will be formed?
HNO_{3} is limiting reagent:.

$$
\mathrm{g}_{\text {answer }} \mathrm{qeagen}
$$

Unit 8-Atoms, Periodic Table and Bonding

1. Give the number of protons, neutrons and electrons in the following:

${ }^{\text {spoupe }}$		Neutrons	Electrons
${ }^{194} \mathrm{Ir}^{3+}$	77	117	74
${ }^{202} \mathrm{Hg}^{2+}$	80	122	78
${ }^{125} \mathrm{Te}^{2-}$	52	73	54
${ }^{263} \mathrm{Sg}$	106	157	106
${ }^{2} \mathrm{H}^{+}$	1	1	0

2. Give the nuclear notation of the following:

Isorope $262 D b^{+2}$	Protons 105	Nentrous. 157	Electrons 103
$123 \mathrm{Sb}^{+3}$	51	72	48
${ }^{15} \mathrm{As}^{-3}$	33	42	36
${ }^{133}$ Xe	54	79	54
${ }^{244} \mathrm{Pu}^{+3}$	94	150	91

3. Write the ground state electron configurations (eg. $1 s^{2}-2 s^{2} 2 p^{6}$) for the following atoms or ions. You may use the core notation.

$$
\text { p }[N e] 3 s^{2} 3 p^{3}
$$

b) Mo

$$
\left[\mathrm{Kr}_{r}\right] 5 s^{2} 4 d^{4}
$$

c) Se [Ar] $4 s^{2} 3 d^{10} 4 p^{4}$
d) $\mathrm{Rb}\left[\mathrm{Kr}_{\mathrm{r}}\right] 5 s^{\prime}$
e) $\operatorname{cr}[\mathrm{Ne}] 3 s^{2} 3 p^{6}$
f) $A i^{3+}[\mathrm{He}] 2 s^{2} 2 p^{6}$
g) $\mathrm{k}^{+}[\mathrm{Ne}] 3 s^{2} 3 p^{6}$
h) $s^{2}[\mathrm{Ne}] 3 s^{2} 3 p^{6}$
f. In order to become stable, an atom of Sr will $-\frac{\text { lose } 2}{}$ electrons and become the ion $\frac{\mathrm{Sr}^{+}+2}{}$ an atom of As will gain $\frac{3}{3}$ electrons and become the ion $\frac{A s^{-3}}{\text { at }}$ an atom of Se will gain 2 electrons and become the ion an atom of N will \qquad 3 electron and becomes ie ion
an atom of I will gain 1 1 electrons and become the ion \qquad an atom of Cs will \qquad \perp electrons and become the ion \qquad Cst an atom of Te will gain 2 electrons and become the jon $T e^{-2}$
Circle the metalloid: $\mathrm{Be} \mathrm{Rb} \mathrm{Os}(\mathrm{Pb} \mathrm{Al}$
Circle the most reactive element in the following: $\bigcap_{\mathrm{a}} \mathrm{Mg}$ Si Al Ar
Circle the most reactive element in the following: $\mathrm{Na} \quad \mathrm{K} \quad \mathrm{Rb}$ (C) Li
Circle the most reactive element in the following: (01) Br I At Ne
Circle the element with the largest atomic radius of these: $\sqrt{3} \mathrm{Mg}$ Si Al Ar
le the element with the largest atomic radius of these: $N^{\prime \prime} \mathrm{P}$ As Sb Bi
-Il Circle the element with the largest ionization energy of these: $\mathrm{K} \quad \mathrm{Ca}$ Ga As 12 Circle the element with the largest ionization energy of these: C Si Ge Sn Pb 13 What is meant by ionization energy? E to remove outer eH Circle the element with the largest density of these: C Si Ge Sn

5 Circle the element with the largest density of these: Na K Rb (Cs) Li
H Circle the element with the highest electronegativity of these: $\because \mathrm{Mg} \mathrm{Sr} \mathrm{Ba} \mathrm{Ra}$
Π Circle the element with the highest electronegativity of these: Mg Si S (Cl)
1: Circle the element with the highest electronegativity of these:(F) Cl Br 1
in What is meant by electronegativity? attraction of an atom for e^{-}of another atom
. Circle the most metallic element of these: Be Mg Ca Sr Ba
it Circle the most metallic element of these: $\mathrm{B} \quad \mathrm{Al}$ Ga In TI
2 Circle the most metallic element of these (G2) Ge Se Br Kr
23 Write a balanced equation for the reaction of potassium with water.

$$
2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+2 \mathrm{KOH}
$$

Ci j Write a balanced equation for the reaction of aluminum with bromine.

$$
2 \mathrm{Al}+3 \mathrm{Br}_{2} \rightarrow 2 \mathrm{AlBr}_{3}
$$

25 In an ionic bond, electrons are
a. shared equally by two atoms
b. shared unequally by two atoms
(.) transferred from a metal to a non-metal
e. closer to one end of a molecule, forming a temporary dipole

Answer \qquad
26 In a covalent bond, electrons are
f. shared equally by two atoms
g. shared unequally by two atoms
h. transferred from a metal to a non-metal
i. transferred from a non-metal to a metal
j. closer to one end of a molecule, forming a temporary dipole Answer \qquad

27 In London forces, electrons are
p. shared equally by two atoms
q. shared unequally by two atoms
r. transferred from a metal to a non-metal
S. transferred from a non-metal to a metal
(t.) closer to one end of a molecule, forming a temporary dipole

Answer \qquad
2. What physical evidence to we have that ionic bonds are very strong?

Ionic cmpds have high melting points
29. Write electron-dot diagrams for:

Yet More Lewis Structures - Answers
For those of you that enjoy such things, some more Lewis structures to draw:

1) $B S F$

$$
\dot{S}=B-\ddot{F}:
$$

2) HBr

3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (ethanol)

4) $\quad N_{2} F_{4}$

5) $\quad \mathrm{SF}_{6}$

6.)

