Factoring $ax^2 + bx + c$ where $a \neq 1$

When the trinomial has an x^2 term with a coefficient other than 1 on the x^2 term, you cannot use the same method as you did when the coefficient is 1.

We will discuss 3 other methods:

1. Trial & Error 2. Decomposition

3. Algebra Tiles

Trial & Error:

Eg.1. Factor
$$2x^2 + 5x + 3$$
.
 $2x^2 + 5x + 3 = ($)(

We know the first terms in the brackets have product of $2x^2$

$$2x^2 + 5x + 3 = (2x \qquad)(x \qquad)$$

2x and x have a product of $2x^2$, place them at front of brackets.

multiple to 3

The product of the second terms is 3. (1, 3 or -1, -3). These will fill in the second part of the binomials.

List the possible combinations of factors.

$$(2x+1)(x+3)$$

$$(2x+3)(x+1)$$

$$(2x-1)(x-3)$$

$$(2x-3)(x-1)$$

<u>IF</u> $2x^2 + 5x + 3$ is factorable, one of these must be the solution.

Expand each until you find the right one.

$$(2x+3)(x+1) = 2x^2 + 2x + 3x + 3 = 2x^2 + 5x + 3.$$

This is the factored form.

*

Decomposition:

Using this method, you will break apart the middle term in the trinomial, then factor by grouping.

To factor $ax^2 + bx + c$, look for two numbers with a product of ac and a sum of b.

Eg.1. Factor.

$$3x^2 - 10x + 8$$

1. We see that $ac = 3 \times 8 = 24$; and b = -10

We need two numbers with a product of 24, but add to -10... -6 and -4.

 $3x^{2} - 6x - 4x + 8$ 3x(x-2) - 4(x-2)

- 2. Break apart the middle term.
- 3. Factor by grouping.

Eg.2. Factor.

$$3a^2 - 22a + 7$$

We need numbers that multiply to 21, but add to -22...

$$3a^2 - 21a - 1a + 7$$

Decompose middle term.

$$3a(a-7)-1(a-7)$$

Factor by grouping.

$$=(a-7)(3a-1)$$

Eg.3. Factor $2x^2 + 7x + 6$ using algebra tiles.

Arrange the tiles into a rectangle (notice the "ones" are again grouped together at the corner of the x^2 tiles)

Side lengths are (2x + 3) and (x + 2)

$$\therefore 2x^2 + 7x + 6 = (2x + 3)(x + 2)$$

Your notes here...

Look to see if a "quick guess" will work, if not... then I use decomposition. Tiles work, but are time consuming

	Factor the following if possible.		
	$217. 2a^2 + 11a + 12$	$218. 5a^2 - 7a + 2$	$219. 3x^2 - 11x + 6$
axc= 2x12=24	202+Ba+3a+12 3182a(a+4)+3(a+4)	multiply -2,-5	$3x^{2}-9x-2x$
+0 a4 }	3,890(0+1)+3(0+1)	2000	
rade to	(2a+3) (a+4)	7)	3x(x-3)-2(3
	[Garo)(CCT)	5a9-5a-da +2	1/2-1 3)/
		5a(a-1)-2(a-1)	(3x-a)(3x-a)
67		1/6. 2/4.	

Factor the following if possible.

 $220.2y^2 + 9y + 9$

(2y+3)(y+3)

221. $5y^2 - 14y - 3$

5y2-15y+1y-3 5y(y-3)+1(y-3)

(54+1)(4-3)

 $222.10x^2 - 17x + 3$

10x9-2x-15x+3

2x(5x-1)-3(5x-1)

(5x-1)(2x-3)

 $223.2x^2 + 3x + 1$

2x2+2x+1x+1 ax(x+1)+1(x+1)(2x+1)(x+1)

 $224.6k^2 - 5k - 4$

6K2+3K-8K-4 3K(2K+1)-4(2K+1)

(3K-4)(2K+1)

47 + 114 + 18

(2y+3)(3y+1)

 $\frac{226.3x^2 - 16x - 12}{3}$

x2-16x-36 $(x+a)(x-18)^{6}$

 $227.3x^3 - 5x^2 - 2x$

 $\frac{3}{3x+a}(x-b)$ $\frac{1}{3}(x+1)$

 $228.9x^2 + 15x + 4$

x3+15x+36

(x+1x)(x+3)

Factor the following if nossible

$229.21x^2 + 37x + 12$	$230.6x^3 - 15x - x^2$	$231. 4t + 10t^2 - 6$
$232.3x^2 - 22xy + 7y^2$	$233.4c^2 - 4cd + d^2$	$234.2x^4 + 7x^2 + 6$
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1		

Challenge Question

What two binomials are being multiplied in the diagram above?

$$(x-a)(x+a)$$

Write an equation using the binomials above and the simplified product.

$$(x^{a}-4)$$