Like Terms

39. When considering algebra tiles, what makes two tiles "alike"?

same size + shape

e.g. \[\square \pm \square \]

40. What do you think makes two algebraic terms alike? (Remember, tiles are used to represent the parts of an expression.)

If the algebraic terms have the same variable and same degree/exponent ➞ "Like Terms"

Collecting Like Terms without tiles:

You have previously been taught to combine like terms in algebraic expressions.

Terms that have the same variable factors, such as \(7x \) and \(5x \), are called like terms.

Simplify any expression containing like terms by adding their coefficients.

Eg. 1. Simplify:
\[
\begin{align*}
7x + 3y + 5x - 2y \\
7x + 5x + 3y - 2y \\
= 12x + y
\end{align*}
\]

Eg. 2. Simplify:
\[
\begin{align*}
3x^2 + 4xy - 6xy + 8x^2 - 3xy \\
3x^2 + 8x^2 + 4xy - 6xy - 3xy \\
= 11x^2 - 5xy
\end{align*}
\]

Simplify by collecting like terms. Then evaluate each expression for \(x = 3, y = -2 \).

41. \[
\begin{align*}
3x + 7y - 12x + 2y \\
= -9x + 9y
\end{align*}
\]

42. \[
\begin{align*}
2x^2 - 7x^2 + 3x^2 - 6 \\
3x^3 - 5x^2 - 6 \\
3(3)^3 - 5(3)^2 - 6 \\
3(27) - 5(9) - 6 \\
= 81 - 45 - 6 \\
= 30
\end{align*}
\]

43. \[
\begin{align*}
5x^2y^2 - 5 + 6x^2y^2 \\
11x^2y^3 - 5 \\
11(3^3)(2^2) - 5 \\
11(9)(-8) - 5 \\
= -792 - 5 \\
= -797
\end{align*}
\]
Adding & Subtracting Polynomials without TILES.

Addition
To add polynomials, collect like terms.

Eg.1. \((x^2 + 4x - 2) + (2x^2 - 6x + 9)\)

Horizental Method:
\[
= x^2 + 4x - 2 + 2x^2 - 6x + 9
\]
\[
= 3x^2 - 2x + 7
\]

Vertical Method:
\[
\begin{align*}
2x^2 & \quad -6x & \quad +9 \\
3x^2 & \quad -4x & \quad +2
\end{align*}
\]

Subtraction
It is important to remember that the subtraction refers to all terms in the bracket immediately after it.

To subtract a polynomial, determine the opposite and add.

Eg.2. \((4x^2 - 2x + 3) - (3x^2 + 5x - 2)\)

This question means the same as:
\[
(4x^2 - 2x + 3) - (3x^2 + 5x - 2)
\]
\[
= 4x^2 - 2x + 3 - 3x^2 - 5x + 2
\]
\[
= x^2 - 7x + 5
\]

Alternate:
(We could have used vertical addition once the opposite was determined if we chose.)

Add or subtract the following polynomials as indicated.

44. \((4x + 6) + (2x + 9)\)
45. \((3a + 7b) + (9a - 3b)\)
46. \((7x + 9) - (3x + 5)\)

47. Add.
\[
(4a - 2b) + (3a + 2b)
\]
\[
= 7a
\]

48. Subtract.
\[
(7x - 3y) - (3x + 2y)
\]
\[
= 4x - 5y
\]

49. Subtract.
\[
(12a - 5b) - (7a - 2b)
\]
\[
= 5a - 5b
\]
Add or subtract the following polynomials as indicated.

50. \((5x^2 - 4x - 2) + (8x^2 + 3x - 3)\)
\[
\begin{align*}
5x^2 - 4x - 2 + 8x^2 + 3x - 3 &= 13x^2 - x - 5
\end{align*}
\]

51. \((3m^2n + mn - 7n) - (5m^2n + 3mn - 8n)\)
\[
\begin{align*}
3m^2n + mn - 7n - 5m^2n - 3mn + 8n &= -2m^2n - 2mn + n
\end{align*}
\]

52. \((8y^2 + 5y - 7) - (9y^2 + 3y - 3)\)
\[
\begin{align*}
8y^2 + 5y - 7 - 9y^2 - 3y + 3 &= -y^2 + 2y - 4
\end{align*}
\]

53. \((2x^2 - 6xy + 9) + (8x^2 + 3x - 3)\)
\[
\begin{align*}
2x^2 - 6xy + 9 + 8x^2 + 3x - 3 &= 10x^2 - 6xy + 3x - 3
\end{align*}
\]

Your notes here...

Remember

- \(\cdot \) + =
- \(\cdot \) - =
- \((-\) +) =
- \((-\) -) = +
Multiplication and the Area Model

Sometimes it is convenient to use a tool from one aspect of mathematics to study another.

To find the product of two numbers, we can consider the numbers as side lengths of a rectangle.

How are side lengths, rectangles, and products related? The Area Model

The product of the two sides is the area of a rectangle. \(A = lw \)

Consider:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6
\end{array}
\]

\[A = 4 \times 6 = 24 \]

Length = 4 Width = 6

54. Show why \(3 \times 3 = 9\) using the area model.

Solution:

\[= 9 \]

55. Show why \(3 \times 4 = 12\) using the area model.

\[= 12 \]

56. Calculate \(5 \times 4\) using the area model.

\[= 20 \]

57. How might we show \(-2 \times 4 = -8\) using the area model?

\[= -8 \]

58. Calculate \(-3 \times 4\) using the area model.

\[= -12 \]

59. Calculate \(-5 \times 4\) using the area model.

\[= -20 \]

60. How might we show \(-2 \times -4 = 8\) using the area model?

\[= 8 \]

61. Calculate \(-3 \times -4\) using the area model.

\[= 12 \]

62. Calculate \(-5 \times -4\) using the area model.

\[= 20 \]
There are some limitations when using the area model to show multiplication. The properties of multiplying integers (+, +), (+, -), (-, -) need to be interpreted by the reader.

63. Show how you could break apart the following numbers to find the product.

\[21 \times 12 = (20 + 1) \times (10 + 2) = 200 + 40 + 10 + 2 = 252 \]

64. Show how you could break apart the following numbers to find the product.

\[32 \times 14 = (30 + 2) \times (10 + 4) = 300 + 120 + 20 + 8 = 448 \]

65. Show how you could break apart the following numbers to find the product.

\[17 \times 24 = (10 + 7) \times (20 + 4) = 200 + 40 + 140 + 28 = 408 \]

66. Draw a rectangle with side lengths of 21 units and 12 units. Model the multiplication above using the rectangle.

\[\begin{array}{c}
20 \\
20 \\
10 \\
10 \\
\hline
= 252 \\
\text{(units}^2) \\
\end{array} \]

67. Draw a rectangle with side lengths of 32 units and 14 units. Model the multiplication above using the rectangle.

\[\begin{array}{c}
30 \\
30 \\
20 \\
20 \\
\hline
= 468 \\
\text{units}^2 \\
\end{array} \]

68. Draw a rectangle with side lengths of 17 units and 24 units. Model the multiplication above using the rectangle.

\[\begin{array}{c}
10 \\
10 \\
\hline
= 408 \\
\text{units}^2 \\
\end{array} \]

69. Use an area model to multiply the following without using a calculator.

\[23 \times 15 = \]

\[\begin{array}{c}
20 \\
20 \\
10 \\
10 \\
\hline
= 345 \text{units}^2 \\
\end{array} \]

70. Use an area model to multiply the following without using a calculator.

\[52 \times 48 = \]

\[\begin{array}{c}
50 \\
50 \\
10 \\
10 \\
\hline
= 2496 \text{units}^2 \\
\end{array} \]

71. Use an area model to multiply the following without using a calculator.

\[79 \times 73 = \]

\[\begin{array}{c}
70 \\
70 \\
3 \\
3 \\
\hline
= 5329 \text{units}^2 \\
\end{array} \]
Algebra tiles and the area model: Multiplication/Division of algebraic expressions.

First we must agree that the following shapes will have the indicated meaning.

<table>
<thead>
<tr>
<th></th>
<th>-1</th>
<th>x</th>
<th>-x</th>
<th>x^2</th>
<th>-x^2</th>
</tr>
</thead>
</table>

We must also remember the result when we multiply:
- Two positives = Positive
- Two negatives = Positive
- One positive and one negative = Negative

72. Write an equation represented by the diagram below and then multiply the two monomials using the area model.

\[
\begin{array}{ccc}
 & & \\
 & 5 \times 4 & = 20 \\
 5 & & \\
\end{array}
\]

73. Write an equation represented by the diagram below and then multiply the two monomials using the area model.

\[
\begin{array}{ccc}
 & -3 & \\
 6 & (4x)(-3) = 18 & \\
\end{array}
\]

74. Write an equation represented by the diagram below and then multiply the two monomials using the area model.

\[
\begin{array}{ccc}
 & & \\
 & 5 \times x & = 5x \\
 5 & & \\
\end{array}
\]

75. Write an equation represented by the diagram below and then multiply the two monomials using the area model.

\[
(x)(x) = x^2
\]

76. If the shaded rectangle represents a negative value, find the product of the two monomials.

\[
-x
\]

77. Write an equation represented by the diagram below and then multiply the two monomials using the area model.

\[
(x)(-x) = -x^2
\]

\[
(ax)(x) = ax^2
\]
78. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

\[
(2x)(3) = 6x
\]

79. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

\[
(2x)(-3) = -6x
\]

80. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

\[
(-3x)(2) = -6x
\]

81. Write a quotient that can be represented by the diagram below and then find the missing side length using the area model.

Area = 6x

\[
\text{Length: } 6
\]

82. Write a quotient that can be represented by the diagram below and then find the missing side length using the area model.

Area = 6x^2

\[
\text{Length: } 2x
\]

83. Write a quotient that can be represented by the diagram below and then find the missing side length using the area model.

Area = -6x^2

\[
\text{Length: } -2x
\]
84. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

\[
\begin{align*}
2x - 1 + 1 & \quad \text{and} \quad 2x + 1 \\
\hline
2x & \\
\hline
2x + 1 & \\
\hline
2x^2 + 2x
\end{align*}
\]

85. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

\[
\begin{align*}
-2x + 1 & \quad \text{and} \quad 2x - 1 \\
\hline
2x & \\
\hline
2x - 1 & \\
\hline
-2x^2 + 2x
\end{align*}
\]

86. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

\[
\begin{align*}
3x - 2 & \quad \text{and} \quad 2x \\
\hline
2x & \\
\hline
2x - 2 & \\
\hline
2x^2 - 4x
\end{align*}
\]

87. Write an equation represented by the diagram below and then multiply the two polynomials using the area model.

\[
\begin{align*}
x - 3 & \quad \text{and} \quad -x \\
\hline
x & \\
\hline
-x & \\
\hline
-2x^2 + 6x
\end{align*}
\]

88. Draw and use an area model to find the product:

\[
(2)(2x + 1)
\]

89. Draw and use an area model to find the product:

\[
(2x)(x - 3)
\]

\[
\begin{align*}
2x & \\
\hline
2x & \\
\hline
2x & \\
\hline
2x^2 - 6x
\end{align*}
\]