Math 9 Homework \& Notebook

Name: \qquad
Teacher:
Miss Zukowski
Block:
Date Submitted: \qquad Unit \#

Submission Checklist: (make sure you have included all components for full marks)
\square Cover page \& Assignment Log
\square Class Notes

- Homework (attached any extra pages to back)
\square Quizzes (attached original quiz + corrections made on separate page)
\square Practice Test/ Review Assignment

Assignment Rubric: Marking Criteria			
Excellent (5) - Good (4) - Satisfactory (3) - Needs Improvement (2) - Incomplete (1) - NHI (0)		Self Assessment	Teacher Assessment
Notebook	- All teacher notes complete - Daily homework assignments have been recorded \& completed (front page) - Booklet is neat, organized \& well presented (ie: name on, no rips/stains, all pages, no scribbles/doodles, etc)	/5	/5
Homework	- All questions attempted/completed - All questions marked (use answer key, correct if needed)	/5	/5
Quiz (1mark/dot point)	- Corrections have been made accurately - Corrections made in a different colour pen/pencil ($+1 / 2$ mark for each correction on the quiz)	/2	/2
Practice Test (1mark/dot point)	- Student has completed all questions - Mathematical working out leading to an answer is shown - Questions are marked (answer key online)	/3	/3
Punctuality	- All checklist items were submitted, and completed on the day of the unit test. (-1 each day late)	/5	/5
Comments:		/20	/20

Homework Assignment Log

Textbook Pages: \qquad

Date	Assignment/Worksheet	Due Date	Completed?

Quizzes \& Tests:

What?	When?	Completed?
Quiz 1		
Quiz 2		
Unit/ Chapter test		

4.1 INTRODUCTION TO POLYNOMIALS

Name: \qquad Block \qquad

The Language of Algebra (follow along with the powerpoint notes)

A \qquad is a letter that can represent any number

For example, the formula for the area of a rectangle is:

$$
\text { Area of a rectangle }=\text { length } \times \text { width }
$$

If A represents the area of the rectangle, I represents the length of the rectangle and w represents the width of the rectangle, then we can write the formula for the area of the rectangle as follows:

$A=1 \times w \quad$ In this formula, the letters \qquad are called \qquad _.

Example: x could represent the number of goals a soccer player scored in a game

The \qquad is the answer when you \qquad
the sum of a and b, is \qquad is the answer when you \qquad the smaller number form the
The \qquad larger. the difference of a and b, is \qquad

A \qquad is the answer when you \qquad is written \qquad We say..."The product of a and b, is $a \times b$ "

A \qquad is the answer when you \qquad (or share equally)

We say "The quotient of a and b, is a -
b"

Double: multiply \qquad
Halve: \qquad by 2

Triple: multiply

Square: multiply a number by
ex. Double 16 is $16 \times 2=32$
ex. Half of 16 is $16 \div 2=8$
ex. Triple 9 is $9 \times 3=27$
ex. Square 7 is $7 \times 7=7^{2}=49$

A \qquad may have one or more variables or may be just a number.

Ex.
A term is part of an \qquad
A \qquad is the number in front of a variable.

- If the term is being subtracted, the coefficient is a \qquad number
- If there is no number in front, the coefficient is \qquad
Example: 9ay $4 a \quad w-16 z y \ldots$
the coefficients are \qquad and \qquad

An \qquad is a combination of numbers and variables together with mathematical operations
ex. \qquad
ex. \qquad
Expressions are made by adding, subtracting, multiplying or dividing \qquad

A \qquad is an algebraic expression with 1 or more terms.

2 or more terms are separated by addition or subtraction
ex. \qquad ex. \qquad
Polynomials are used in math to solve algebraic problems.

An \qquad always has an equals sign =

$$
\text { ex. } r=5 a+7 y \quad 2(v-6)=12
$$

A \qquad is a number whose value doesn't change, it always remains the same
ex. 2001 -3
73715 -8

TRY THIS!

Language of Algebra

$$
4 a+b-12 c+5
$$

1. List the individual terms in the expression
2. In the expression, state the coefficients of a, b, c and d
3. What is the constant term?
4. State the coefficient of b in the expression

$$
3 a+4 a b+5 b^{2}+7 b
$$

Write an expression for this sentence:
Start with a number, multiply it by three then add five
Let the starting number be " y "

TRY THIS!

Write an expression for each of the following

1. The sum of 3 and k
2. The product of m and 7
3.5 is added to one half of k
3. The sum of a and b is doubled

What is a polynomial?

Algebra Tiles \& Visual Representation

Red tiles represent positive 1

Positive 1 -tile

Green tiles this shape represent positive x

x tile

White tiles represent negative 1

Negative 1 - tile

White tiles this shape represent negative x

- x tile

White tiles this shape represent negative x^{2}

PRACTICE

Example \#1: Use algebra tiles to model each expression below.
a) $2 x^{2}+3 x-5$
b) $-4 x+9$

Example \#2: Write the expression represented by the algebra tiles below.
a)

b)

A polynomial is one term or the sum/difference of terms whose variables have whole number exponents.

The expression is NOT A POLYNOMIAL when:

- There is a negative exponent ex.
- The variable cannot be in the denominator of a fraction

- The variable cannot be inside a radical
ex.

Example \#3: Which of the following are polynomials? Explain your reasoning.
a) $-2 x+6$
b) $-10 x^{2}+\sqrt{x}$
c) $\frac{1}{x}-3 x+2$

Vocabulary

Coefficients are the numbers in front of the variables.

The term with the greatest sum of exponents (from the variables only) determines the degree of the polynomial.

The constant term is the one without the variable (its value does not change/vary when the value of x change, it remains constant)

Example \#4: For each polynomial below, determine the coefficients, the degree and the constant.

Polynomial	Coefficients	Degree	Variable	Constant
$5 x^{2}-8 x+2$				
$-6 x-7$				
$-10 x^{2}+3 x$				

We classify polynomials by the number of terms.
A monomial has

A binomial has

A trinomial has

A polynomial is generally written in descending order. This means we order the terms with the highest degree term first, all the way down to the constant term of degree zero.

Evaluating Algebraic Expressions

We can use algebraic expressions to solve problems and solve for things like cost. The following algebraic expression is used to determine the cost of a school field trip.
$C=\$ 300+\$ 10 t+\$ 7.50 s$
where C is the cost, t is the number of teacher supervisors on the trip and s is the number of students on the trip.

If a school field trip had 4 teacher supervisors and 100 students in attendance what would the total cost of the field trip be?

Required questions

Extra practice
Extension
2, 3abcd, 4, 5abcd, 6, 7, 11,
3ef, 5ef, q, 10, 12,
21, 22
13, 14, 15, 16
17, 18,
ASSIGNMENT \#1
Section 4.1 pg 112-115

4.2 Adding and Subtracting PolynomiaLs

Investigation: Model each polynomial using algebra tiles. USE YOUR OWN ALGEBRA TILES TO MODEL ON YOUR DESK!
a) $2 x^{2}-8 x+3$

b) $-x^{2}+6 x-1$

Consider the model for the polynomial $2 x^{2}-8 x+3-x^{2}+6 x-1$.
We organize the tiles by grouping the same sizes together and simplify by removing the opposite pairs.

These opposite pairs are sometimes referred to as zero pairs as they are equivalent to zero. For example: \qquad are zero pairs

The opposite pairs cancel out and we are left with:

Simplified expression: \qquad

A polynomial is in simplified form when:
\rightarrow Its algebra tile model uses the fewest tiles possible
\rightarrow Its symbolic form contains only one term of each degree and no terms with a zero coefficient.

LIKE TERMS are:
\rightarrow Terms that can be represented by algebra tiles with the same shape AND size.
\rightarrow Terms with the same variable AND same exponent
\rightarrow Constants may be different. For example: $3 x^{2}$ and $5 x^{2}$ are still "like terms" because they are both " x "

Example \#1:

a) List three terms that are like terms with $5 x^{2}$
b) List three terms that are unlike terms with $5 x^{2}$

Group the like terms in the following expression:

$$
2 x+5+x^{2}+7+36 x+3 x^{2}
$$

PRACTICE

Group the like terms in the following expressions:

1) $-6 k+7 k$
2) $12 r-8-12$
3) $n-10+9 n-3$
4) $-4 x-10 x$
5) $-r-10 r$
6) $-2 x+11+6 x$

Adding Polynomials

Example \#2: What is the sum of $2 x+2$ and $3 x+3$?
Simplify the polynomial visually using algebra tiles and symbolically with algebra.

Visually	Symbolically
Group like tiles:	
Remove Any Zero Pairs:	Group Like Terms:

Example \#3: What is the sum of $2 x^{2}+2 x-3$ and $-x^{2}-3 x+3 ?$
Simplify the polynomial visually using algebra tiles and symbolically with algebra.

Visually	Symbolically
Group like tiles:	Group Like Terms:
Remove Any Zero Pairs:	

Example \#4: $(2 x+3)+(4 x-3)$
Remove the brackets
Rearrange so like terms are together Combine like terms

Example \#5: $\left(2 x^{2}-4 x-1\right)+\left(3 x^{2}+2 x+5\right)$
Remove the brackets
Rearrange so like terms are together
Combine like terms

DO THE ADDITION QUESTIONS ONLY (COME BACK TO SUBTRACTION NEXTLESSON)
Simplify each expression.

1) $\left(5 p^{2}-3\right)+\left(2 p^{2}-3 p^{3}\right)$

$$
\text { 2) }\left(a^{3}-2 a^{2}\right)-\left(3 a^{2}-4 a^{3}\right)
$$

3) $\left(4+2 n^{3}\right)+\left(5 n^{3}+2\right)$
4) $\left(4 n-3 n^{3}\right)-\left(3 n^{3}+4 n\right)$
5) $\left(3 a^{2}+1\right)-\left(4+2 a^{2}\right)$
6) $\left(4 r^{3}+3 r^{4}\right)-\left(r^{4}-5 r^{3}\right)$
7) $(5 a+4)-(5 a+3)$
8) $\left(3 x^{4}-3 x\right)-\left(3 x-3 x^{4}\right)$
9) $\left(-4 k^{4}+14+3 k^{2}\right)+\left(-3 k^{4}-14 k^{2}-8\right)$
10) $\left(3-6 n^{5}-8 n^{4}\right)-\left(-6 n^{4}-3 n-8 n^{5}\right)$
11) $\left(12 a^{5}-6 a-10 a^{3}\right)-\left(10 a-2 a^{5}-14 a^{4}\right)$
12) $\left(8 n-3 n^{4}+10 n^{2}\right)-\left(3 n^{2}+11 n^{4}-7\right)$
13) $\left(-x^{4}+13 x^{5}+6 x^{3}\right)+\left(6 x^{3}+5 x^{5}+7 x^{4}\right)$
14) $\left(9 r^{3}+5 r^{2}+11 r\right)+\left(-2 r^{3}+9 r-8 r^{2}\right)$
15) $\left(13 n^{2}+11 n-2 n^{4}\right)+\left(-13 n^{2}-3 n-6 n^{4}\right)$
16) $\left(-7 x^{5}+14-2 x\right)+\left(10 x^{4}+7 x+5 x^{5}\right)$

Subtracting Polynomials

Method \#1: Subtracting Polynomials Using Algebra Tiles

Example \#1: Subtract $\left(3 x^{2}-2 x\right)-\left(x^{2}+4 x\right)$
Start with the first polynomial:

We need to

- take away one x^{2} tile from three x^{2} tiles
- take away four x tiles from two negative x tiles

If you don't have enough positive tiles, you need to add more positive tiles and balance by also adding the same number of negative tiles.

Simplified expression:

Example \#2: Use algebra tiles to subtract $\left(4 x^{2}-2 x+1\right)-\left(3 x^{2}-4 x+3\right)$

Example \#3: $(5 x+4)-(2 x+1)$
The opposite of $(2 x+1)$ is $(-2 x-1)$

Remove brackets and add the opposite

Collect like terms

Combine like terms
Example \#4: $\left(3 x^{2}+4 x-2\right)-\left(2 x^{2}+6 x+2\right)$
The opposite of $\left(2 x^{2}+6 x+2\right)$ is \qquad

Remove brackets and add the opposite

Collect like terms

Combine like terms
Method \#3: Subtracting Using Integer Properties ("paper an pencil method"
Warm Up: Subtract.
a) 8-7
b) $-3-5$
c) $6-(-4)$
d) $-2-(-5)$

Example Subtract using properties of integers.
a) $\left(3 x^{2}-2 x\right)-\left(x^{2}+4 x\right)$
b) $\left(-8 a^{2}+3 a-7\right)-\left(-2 a^{2}-a+5\right)$

MOMEWOPR ASSIGNMENT \#2 Section 4.2 pg 123-126	Required questions 1, 2a, 3, 4, 6, 7abcd, q, 10, $11,12,13,16,19,21,22$, 23a	Extra practice 2b, 7ef, 8, 14, 15, 17, 18, 20, 23bcd	Extension 25

