

Name:_

Teacher:

Miss Zukowski

Block:_____
Date Submitted: / / 2018

Unit #____:____

Submission Checklist: (make sure you have included <u>all</u> components for full marks)

- □ Cover page & Assignment Log
- Class Notes
- □ Homework (attached any extra pages to back)
- □ Quizzes (attached original quiz + <u>corrections made on separate page</u>)
- □ Practice Test/ Review Assignment

Assignment Rubric: Marking Criteria					
Excellent (5) -	Good (4) - Satisfactory (3) - Needs Improvement (2) - Incomplete (1) - NHI (0)	Self Assessment	Teacher Assessment		
Notebook	 All teacher notes complete Daily homework assignments have been recorded & completed (front page) Booklet is neat, organized & well presented (ie: name on, no rips/stains, all pages, no scribbles/doodles, etc) 	/5	/5		
Homework	 All questions attempted/completed All questions <u>marked</u> (use answer key, correct if needed) 	/5	/5		
Quiz (1mark/dot point)	 Corrections have been made accurately Corrections made in a <u>different colour pen/pencil</u> (+½ mark for each correction on the quiz) 	/2	/2		
Practice Test (1mark/dot point)	 Student has completed all questions Mathematical working out leading to an answer is shown Questions are marked (answer key online) 	/3	/3		
Punctuality	• All checklist items were submitted, and completed on the day of the unit test. (-1 each day late)	/5	/5		
Comments:		/20	/20		

Homework Assignment Log

Textbook Pages:_____

Date	Assignment/Worksheet	Due Date	Completed?

Quizzes & Tests:

What?	When?	Completed?
Quiz 1		
Quiz 2		
Unit/ Chapter test		

4.1 INTRODUCTION TO POLYNOMIALS

Name:_____

Block____

The Language of Algebra (follow along with the powerpoint notes)

A ______is a letter that can represent any number

For example, the formula for the area of a rectangle is:

Area of a rectangle = length × width

If A represents the area of the rectangle, I represents the length of the rectangle and w represents the width of the rectangle, then we can write the formula for the area of the rectangle as follows:

A = I × w In this formula, the letters _____are called _____

Example: x could represent the number of goals a soccer player scored in a game

The _	is the answer when you	
	the sum of a and b, is	
The	is the answer when you	the smaller number form the
larger	. the difference of a and b,	is
A	is the answer when you	
	is written	We say"The product of a and b, is a × b "
A	is the answer when you	(or share equally)

$\underline{\qquad}$ is written $\frac{a}{b}$	We say "The quotient of a and b, is a ÷
b"	
Double: multiply	ex. Double 16 is 16 × 2 = 32
Halve:by 2	ex. Half of 16 is 16 ÷ 2 =8
Triple: multiply	ex. Triple 9 is 9 × 3 = 27
Square: multiply a number by	ex. Square 7 is 7 × 7 = 7²= 49
A may have one or more Ex.	variables or may be just a number.
 A term is part of an	t of a variable. red, the coefficient is anumber
• If there is no number in fron Example: 9ay 4a w-16zy	t, the coefficient is
the coefficients areand	
Anis a with <u>mathematical operations</u>	combination of <u>numbers</u> and <u>variables</u> together
ex	
ex	
Expressions are made by adding , subtract	ting, multiplying or dividing
A is an algebraic expres	sion with <u>1 or more terms.</u>
2 or more terms are separated by addition	n or subtraction
ex	ex
Polynomials are used in math to solve algeb	braic problems.

2

- 1. List the individual terms in the expression
- 2. In the expression, state the coefficients of a, b, c and d
- 3. What is the constant term?
- 4. State the coefficient of b in the expression $3a + 4ab + 5b^2 + 7b$

Write an <u>expression</u> for this sentence:

Start with a number, multiply it by three then add five

Let the starting number be $\ensuremath{`'\!y''}$

- 1. The sum of 3 and k
- 2. The product of m and 7
- 3.5 is added to one half of k
- 4. The sum of a and b is doubled

Algebra Tiles & Visual Representation

Red tiles represent positive 1	White tiles represent negative 1
Positive 1 -tile	Negative 1 - tile
Green tiles this shape represent positive x	White tiles this shape represent negative x
x tile	- x tile
Green tiles this shape represent positive x ²	White tiles this shape represent negative x ²
x ²	

USING THE 2 PAGES YOUR TEACHER HAS PROVIDED, MAKE YOURSELF 1 SET OF POSITIVE ALGEBRA TILES AND 1 SET OF NEGATIVE ALGEBRA TILES

Example #1: Use algebra tiles to model each expression below.

- a) $2x^2 + 3x 5$
- b) -4x + 9

Example #2: Write the expression represented by the algebra tiles below.

- The variable cannot be inside a radical ex.

Example #3: Which of the following are polynomials? Explain your reasoning.

a)
$$-2x + 6$$
 b) $-10x^2 + \sqrt{x}$ c) $\frac{1}{x} - 3x + 2$

Vocabulary

Coefficients are the numbers in front of the variables.

The term with the greatest sum of exponents (from the variables only) determines the **degree** of the polynomial.

The **constant** term is the one without the variable (its value does not change/vary when the value of x change, it remains constant)

Example #4: For each polynomial below, determine the coefficients, the degree and the constant.

Polynomial	Coefficients	Degree	Variable	Constant
5x ² - 8x + 2				
- 6x - 7				
- 10x ² + 3x				

We classify polynomials by the number of terms.

A monomial has

A binomial has

A trinomial has

A polynomial is generally written in descending order. This means we order the terms with the highest degree term first, all the way down to the constant term of degree zero.

Evaluating Algebraic Expressions

We can use algebraic expressions to solve problems and solve for things like cost. The following algebraic expression is used to determine the cost of a school field trip.

C = \$300 + \$10t + \$7.50s

where C is the cost, t is the number of teacher supervisors on the trip and s is the number of students on the trip.

If a school field trip had 4 teacher supervisors and 100 students in attendance what would the total cost of the field trip be?

Consider the model for the polynomial $2x^2 - 8x + 3 - x^2 + 6x - 1$.

We organize the tiles by grouping the same sizes together and simplify by removing the opposite pairs.

These opposite pairs are sometimes referred to as **zero pairs** as they are equivalent to zero. *For example:______ are zero pairs*

The opposite pairs cancel out and we are left with:

Simplified expression: _____

A polynomial is in **simplified form** when:

- → Its algebra tile model uses the fewest tiles possible
- → Its symbolic form contains only one term of each degree and no terms with a zero coefficient.

LIKE TERMS are:

- \rightarrow Terms that can be represented by algebra tiles with the same shape AND size.
- → Terms with the same variable AND same exponent

→ Constants may be different. For example: $3x^2$ and $5x^2$ are still "like terms" because they are both " x^2 "

Example #1:

- a) List three terms that are like terms with $5x^2$
- b) List three terms that are unlike terms with $5x^2$

Group the like terms in the following expression:

 $2x + 5 + x^2 + 7 + 36x + 3x^2$

Group the like terms in the following expressions:

1) -6k + 7k 2) 12r - 8 - 12

3) n - 10 + 9n - 34) -4x - 10x

5) -r - 10r

6) -2x + 11 + 6x

Adding Polynomials

Example #2: What is the sum of 2x + 2 and 3x + 3?

Simplify the polynomial visually using algebra tiles and symbolically with algebra.

Visually	Symbolically		
Group like tiles:	Group Like Terms:		
Remove Any Zero Pairs:	Combine Like Terms:		

Example #3: What is the sum of $2x^2 + 2x - 3$ and $-x^2 - 3x + 3$?

<u> </u>								
Simplify	v tho	nolynomial	vieually	ucina	alaohra	tiloe and	eymbolically	with algebra
	ง แม่อ	DOIVITOTITIAL	visualiv	usinu a	alucula	lines and	SVIIDUILAII	v with aluch a.
	/		,		0			/

Visually	Symbolically		
Group like tiles:	Group Like Terms:		
Remove Any Zero Pairs:	Combine Like Terms:		

Example #4: (2x + 3) + (4x - 3)

Remove the brackets

Rearrange so like terms are together

Combine like terms

Example #5: $(2x^2 - 4x - 1) + (3x^2 + 2x + 5)$

Remove the brackets

Rearrange so like terms are together

Combine like terms

PRACTICE

DO THE ADDITION QUESTIONS ONLY (COME BACK TO SUBTRACTION NEXT LESSON)

Simplify each expression.

1)
$$(5p^2 - 3) + (2p^2 - 3p^3)$$

2) $(a^3 - 2a^2) - (3a^2 - 4a^3)$

3)
$$(4+2n^3) + (5n^3+2)$$

4) $(4n-3n^3) - (3n^3+4n)$

5)
$$(3a^2 + 1) - (4 + 2a^2)$$

6) $(4r^3 + 3r^4) - (r^4 - 5r^3)$

$$77 (5a+4) - (5a+3) (3x-3x^4) - (3x-3x^4)$$

9)
$$(-4k^4 + 14 + 3k^2) + (-3k^4 - 14k^2 - 8)$$

10) $(3 - 6n^5 - 8n^4) - (-6n^4 - 3n - 8n^5)$

11)
$$(12a^5 - 6a - 10a^3) - (10a - 2a^5 - 14a^4)$$

12) $(8n - 3n^4 + 10n^2) - (3n^2 + 11n^4 - 7)$

13)
$$(-x^4 + 13x^5 + 6x^3) + (6x^3 + 5x^5 + 7x^4)$$

14) $(9r^3 + 5r^2 + 11r) + (-2r^3 + 9r - 8r^2)$

15)
$$(13n^2 + 11n - 2n^4) + (-13n^2 - 3n - 6n^4)$$

16) $(-7x^5 + 14 - 2x) + (10x^4 + 7x + 5x^5)$

Subtracting Polynomials

Method #1: Subtracting Polynomials Using Algebra Tiles

Example #1: Subtract $(3x^2 - 2x) - (x^2 + 4x)$

Start with the first polynomial:

We need to

- \cdot take away one x² tile from three x² tiles
- take away four x tiles from two negative x tiles

If you don't have enough positive tiles, you need to add more positive tiles and balance by also adding the same number of negative tiles.

Example #2: Use algebra tiles to subtract $(4x^2 - 2x + 1) - (3x^2 - 4x + 3)$

Method #2: Add the Opposite

Example #3: (5x + 4) - (2x + 1) The opposite of (2x + 1) is (-2x - 1)

Remove brackets and add the opposite

Collect like terms

Combine like terms

Example #4: $(3x^2 + 4x - 2) - (2x^2 + 6x + 2)$

The opposite of $(2x^2 + 6x + 2)$ is _____

Remove brackets and add the opposite

Collect like terms

Combine like terms

Method #3: Subtracting Using Integer Properties ("paper an pencil method"

Warm Up:Subtract.a) 8 - 7b) -3 - 5c) 6 - (-4)d) -2 - (-5)

Example Subtract using properties of integers.

a) $(3x^2 - 2x) - (x^2 + 4x)$ b) $(-8a^2 + 3a - 7) - (-2a^2 - a + 5)$

