

A variable is a letter that can represent any number

For example, the formula for the area of a rectangle is:

Area of a rectangle = length × width

If A represents the area of the rectangle, I represents the length of the rectangle and w represents the width of the rectangle, then we can write the formula for the area of the rectangle as follows:

 $A = I \times w$ In this formula, the letters A, I and w are called **pronumerals.**

Example: x could represent the number of goals a soccer player scored in a game

The sum/total is the answer when you add

the sum of a and b, is a + b

The difference is the answer when you subtract the smaller number form the larger

the difference of a and b, is a - b

A product is the answer when you multiply a × b is written ab the product of a and b, is a × b

A quotient is the answer when you divide

 $a \div b is written a$

The quotient of a and b, is a \div b

<u>Algebra Terms</u>

Double: multiply by 2 ex. Double 16 is 16 × 2 = 32

Halve: divide by 2 ex. Half of 16 is $16 \div 2 = 8$ Consecutive: describes the numbers that follow directly after each other Triple: multiply by 3 ex. 7, 8, 9, 10 are ex. Triple 9 is $9 \times 3 = 27$ consecutive numbers; 11, 13, 15 are consecutive odd Square: multiply a number by numbers, 11, 14, 17 are **not** itself consecutive numbers. ex. Square 7 is $7 \times 7 = 49$

A term may have one or more pronumerals (variables) or may be just a number. Ex. 5a, 7q, 9g/5, w,400,abc

A term is part of an expression

A coefficient is the number in front of a variable.

• If the term is being subtracted, the coefficient is a negative number

• If there is no number in front, the coefficient is 1

Example: 9ay 4a w-16zy....the coefficients are 9, 4, 1 and -16

- ex. 3x + 2zy
- ex. 8 ÷ (3a 2b) + 41

Expressions are made by adding, subtracting, multiplying or dividing terms

- 2 or more terms are separated by addition or subtraction
 - $ex. x^2 + 3x$

ex. (-2x²) + 5x - 4 Polynomials are used in math to solve algebraic problems.

An equation always has an equals sign = ex. r = 5a + 7y 2(v-6) = 12

A constant is a number whose value doesn't change, it always remains the same

ex. 2001-3 73715 -8

- 1. List the individual terms in the expression
- In the expression, state the coefficients of a,
 b, c and d
- 3. What is the constant term?
- 4. State the coefficient of b in the expression $3a + 4ab + 5b^2 + 7b$

4a + b - 12c + 5

- List the individual terms in the expression
 Each part of an expression is a term. Terms get added (or subtracted) to make an expression. So, there are four terms: 4a, b, 12c and 5
- In the expression, state the coefficients of a, b, c and d The coefficient is the number in front of a variable. So,
 The coefficient of a is 4. the coefficient of b is 1 because b is the same as 1 × b. the coefficient of c is -12 because this term is being subtracted. And the coefficinet of d is 0 because there are no terms with d.

4a + b - 12c + 5

3. What is the constant term?

- A constant term is any term that does not have a variable (letter) in front of it. The constant is 5
- 4. State the coefficient of b in the expression

 $3a + 4ab + 5b^2 + 7b$

Although there is a 4 in front of ab and a 5 in front of b², neither of these are terms containing just "b", so they are ignored. We are looking for <u>only 'b' by itself</u>. So, the coefficient is 7, for 7b.

Write an <u>expression</u> for this sentence:

Start with a number, multiply it by three then add five

Let the starting number be "y"

- 1. Start with a number
- 2. Multiply by 3
- 3. Then add 5 y × 3 + 5

So the algebraic expression is:

3y + 5

"y"

y × 3

Write an <u>expression</u> for each of the following

- 1. The sum of 3 and k
- 2. The product of m and 7
- 3.5 is added to one half of k
- 4. The sum of a and b is doubled

1. The sum of 3 and k

The word sum means '+' so, 3+k

2. The product of m and 7

The word 'product' means to \times so, m \times 7 or 7m

3. 5 is added to one half of k

One half of k can be written $\frac{1}{2} \times k$ (because 'of' means \times) or k/2 because k is begin divided by two

4. The sum of a and b is doubled

The values of a and b are being added and the result is multiplied by 2. brackets are required to multiply the qhole result by two and not just the value of b

 $(a+b) \times 2$ or 2(a+b)

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
X				2			x^2				x^2				X	x	x	x	
().)	C	2		•	X		2		3	λ	Ċ	2		x	x	x	x
)	r	2	,		-	X	2)		X		2		x	x	x	x
Ų		J	C	2			X		2)	C	2		x	x	x	x

Example #1: Use algebra tiles to model each expression below.

PRACTICE

1 X $\frac{1}{1} = 2x^{2} + 4x + 5 - 2$ -2 = $2x^{2} + 4x + 3$ χ^2 r X X axa 4x b) X -1 $=-x^{2}+4x-2$ -1 -X χ X 42

model with YOUR algebratiles, then draw!

(colour some

A polynomial is one term or the sum/difference of terms whose variables have whole number exponents.

Terms are numbers, The expression is NOT A POLYNOMIAL when variables, or the product of a number and a variable ex. 2^{-3} , χ (ex. 6, x, or 3x²y) There is a *negative exponent* _ The variable cannot be in the denominator of a fraction ex. ex. Jx, 3/9 The variable cannot be inside a radical -squa 5

Example #3: Which of the following are polynomials? Explain your reasoning.

We classify polynomials by the number of terms

		2, 3abcd, 4, 5abco 13, 14, 15, 16		3ef, 5ef, 9, 10, 12, 17, 18,	21, 22							
	Homework	Required qu		Extra practice	Extension							
	C = 300 + 40	+ 750 [=71	090]									
	C = 300 + 10(-	1)+7.50(100										
	c = \$300 + \$10	0t + \$7.505	(substi	tute in value	st solve:)							
	If a school field trip had 4 teacher supervisors and 100 students in attendance what would the total cost of the field trip be? C = \$300 + \$10t + \$7.505 (substitute in values + solve!)											
	students on the trip. $t=4$ $3=100$											
	where C is the cost, t is the number of teacher supervisors on the trip and s is the number of											
	C = \$300 + \$10t + \$7.50s											
	The following algebraic expression is used to determine the cost of a school field trip.											
с, ⁴	We can use algebraic expressions to solve problems and solve for things like cost.											
en	Evaluating Algebraic Expressions											
order	vents: 225 324	$+8x^{3}+3x$	0+3e	constar	+ alwars							
	eg. $8x^3 + 3x^4 + 3 + 3x$ is <u>INCORRECT</u> !! $3x^4 + 3 + 3x$ is <u>INCORRECT</u> !! $3x^4 + 3 + 3x$ is <u>INCORRECT</u> !! $3x^4 + 3 + 3x + 3x + 3x$ constant! $3x^4 + 3x^3 + 3x^4 + 3x^4 + 3x^4$											
	highest degree term first, all the way down to the constant term of dogree zero											
	A polynomial is generally written in descending order. This means we order the terms with the											
			- J.	3x+y -	3							
	A trinomial has three	terms	ea	37 +42 -	8							
			- 7.	$3x + y^{a}$								
	A binomial has $+\omega_0$	terms	Pa - :	2~ , 2								
		8		, y								
	A monomial has	term.	ea -	3x; y ^a								
	We classify polynomials by the number of terms.											

all students early finishers must complete extra

practice

ASSIGNMENT #1 Section 4.1 pg 112-115

7

LIKE TERMS are:

→ Terms that can be represented by algebra tiles with the same shape AND size.

→ Terms with the same variable AND same exponent

 \rightarrow Constants may be different. For example: $3x^2$ and $5x^2$ are still "like terms" because they are both "x2 e variable + exponent are the same. Example #1: a) List three terms that are like terms with $5x^2$, x^2 , $2x^2$, $-x^2$ b) List three terms that are unlike terms with 5x² $, x, x^{2}y, 5x$ Group the like terms in the following expression: 1 like to men l rewrite belaw in $x^2 + 3x^2 + 36x + 36x + 3x^2$ = $4x^2 + 38x + 13$ $x^2 + 3x^2 + 3x + 36x + 5 + 7$ $4x^2 + 38x + 13$ PACTICE (give students a few mins to practice, then review answers as a whole class) put shapes roup terms PRACTICE Group the like terms in the following expressions: 1) -6k + 7k = K2) 12r - 8 - 12= 1ar - 20 3) n - 10 + 9n - 34) -4x - 10xn+9n -10-3 -14x6) -2x + 11 + 6x5) -r - 10r-2x+6x+11 -11r4x + 11

Adding Polynomials

Example #2: What is the sum of 2x + 2 and 3x + 3?

Simplify the polynomial visually using algebra tiles and symbolically with algebra.

Example #3: What is the sum of $2x^2 + 2x - 3$ and $-x^2 - 3x + 3$?

1

Simplify the polynomial visually using algebra tiles and symbolically with algebra.

Visually Symbolically 00 -x shown he $-x^{2}-3x+3$ $\partial x^{2} + \partial x - 3$ Group like tiles: Group Like Terms: ax2-x2+ ax+3x-3+B ź Remove Any Zero Pairs: Combine Like Terms: (cross out above) $2x^{2} + 3x - 3x - 3 + 3$ re-drau x2 Example #4: (2x + 3) + (4x - 3) Remove the brackets + box like terms Rearrange so like terms are together Combine like terms always show your work Remove the brackets diff. shapes Example #5: (2x2+4x-1)+ (3x2 + 2x(+ 5) $2x^{2}+3x^{2}-4x+2x-1+5$ Rearrange so like terms are together Combine like terms 4

PRACTICE

DO THE ADDITION QUESTIONS ONLY (COME BACK TO SUBTRACTION NEXT LESSON) Simplify each expression.

1) $(5p^2 - 3) + (2p^2 - 3p^3)$ (answers on next page) =>

3)
$$(4+2n^3) + (5n^3+2)$$

4) $(4n-3n^3) - (3n^3+4n)$

5)
$$(3a^2 + 1) - (4 + 2a^2)$$

6) $(4r^3 + 3r^4) - (r^4 - 5r^3)$

9)
$$(-4k^4 + 14 + 3k^2) + (-3k^4 - 14k^2 - 8)$$

(3 - 6n⁵ - 8n⁴) - (-6n⁴ - 3n - 8n⁵)

$$117(12a^5 - 6a - 10a^3) - (10a - 2a^5 - 14a^4)$$

$$(8n - 3n^4 + 10n^2) - (3n^2 + 11n^4 - 7)$$

13)
$$(-x^4 + 13x^5 + 6x^3) + (6x^3 + 5x^5 + 7x^4)$$
 14) $(9r^3 + 5r^2 + 11r) + (-2r^3 + 9r - 8r^2)$

15)
$$(13n^2 + 11n - 2n^4) + (-13n^2 - 3n - 6n^4)$$

16) $(-7x^5 + 14 - 2x) + (10x^4 + 7x + 5x^5)$

Kuta Software - Infinite Algebra 1

Name

Adding and Subtracting Polynomials
 Date
 period

 Simplify each expression.
 1)
$$(5p^2 - 3) + (2p^2 - 3p^3)$$
 2) $(a^3 - 2a^2) - (3a^2 - 4a^3)$
 $5a^3 - 5a^2$

 3) $(4 + 2n^3) + (5n^3 + 2)$
 4) $(4n - 3n^3) - (3n^3 + 4n)$
 $-6n^3$

 7n^3 + 6
 -6n^3

 5) $(3a^2 + 1) - (4 + 2a^2)$
 6) $(4r^3 + 3r^4) - (r^4 - 5r^3)$
 $a^2 - 3$
 $2r^4 + 9r^3$

 7) $(5a + 4) - (5a + 3)$
 8) $(3x^4 - 3x) - (3x - 3x^4)$

 1
 $6x^4 - 6x$

 9) $(-4k^4 + 14 + 3k^2) + (-3k^4 - 14k^2 - 8)$
 10) $(3 - 6n^5 - 8n^4) - (-6n^4 - 3n - 8n^5)$
 $-7k^4 - 11k^2 + 6$
 $2n^5 - 2n^4 + 3n + 3$

 11) $(12a^5 - 6a - 10a^3) - (10a - 2a^5 - 14a^4)$
 12) $(8n - 3n^4 + 10n^2) - (3n^2 + 11n^4 - 7)$
 $14a^3 + 14a^4 - 10a^3 - 16a$
 $-14n^4 + 7n^2 + 8n + 7$

13)
$$(-x^4 + 13x^5 + 6x^3) + (6x^3 + 5x^5 + 7x^4)$$

 $18x^5 + 6x^4 + 12x^3$

15)
$$(13n^2 + 11n - 2n^4) + (-13n^2 - 3n - 6n^4)$$

 $-8n^4 + 8n$

14)
$$(9r^3 + 5r^2 + 11r) + (-2r^3 + 9r - 8r^2)$$

 $7r^3 - 3r^2 + 20r$

16)
$$(-7x^5 + 14 - 2x) + (10x^4 + 7x + 5x^5)$$

 $-2x^5 + 10x^4 + 5x + 14$

-1-

