4.1 The Language of

y
 Algebra Terms
 A variable is a letter that can represent any number

For example, the formula for the area of a rectangle is:
Area of a rectangle $=$ length \times width
If A represents the area of the rectangle, I represents the length of the rectangle and w represents the width of the rectangle, then we can write the formula for the area of the rectangle as follows:
$A=I \times w \quad$ In this formula, the letters A, I and w are called pronumerals.

Example: x could represent the number of goals a soccer player scored in a game

The sum/total is the answer when you add

$$
\text { the sum of } a \text { and } b \text {, is } a+b
$$

The difference is the answer when you subtract the smaller number form the larger the difference of a and b, is $a-b$

Algebra Terms

A product is the answer when you multiply
$a \times b$ is written $a b$
the product of a and b, is $a \times b$
A quotient is the answer when you divide

$$
a \div b \text { is written } \frac{a}{b}
$$

The quotient of a and b, is $a \div b$

Algebra Terms

Double: multiply by 2 ex. Double 16 is $16 \times 2=$ 32

Halve: divide by 2
ex. Half of 16 is $16 \div 2=8$ Consecutive: describes the numbers that follow
Triple: multiply by 3
ex. Triple 9 is $9 \times 3=27$

Square: multiply a number by itself
ex. Square 7 is $7 \times 7=49$ directly after each other ex. $7,8,9,10$ are consecutive numbers; 11, 13, 15 are consecutive odd numbers, 11, 14, 17 are not consecutive numbers.

Algebra Terms

A term may have one or more pronumerals (variables) or may be just a number.
Ex. 5a, 7q, 9g/5, w,400,abc

A term is part of an expression

Algebra Terms

A coefficient is the number in front of a variable.

- If the term is being subtracted, the coefficient is a negative number
- If there is no number in front, the coefficient is 1
Example: 9ay 4a w-16zy....the coefficients are 9, 4, 1 and -16
 \title{
Algebra Terms
 \title{
Algebra Terms
 An algebraic expression is a combination of numbers and variables together with mathematical operations
 ex. 3x + 2zy
 ex. $8 \div(3 a-2 b)+41$
}

Expressions are made by adding, subtracting, multiplying or dividing terms

Algebra Terms
A polynomial is an algebraic expression with 1 or more terms.
2 or more terms are separated by addition or subtraction
ex. $x^{2}+3 x$
ex. $\left(-2 x^{2}\right)+5 x-4$
Polynomials are used in math to solve algebraic problems.

Algebra Terms

(1/-2)
An equation always has an equals
sign =
ex. $r=5 a+7 y \quad 2(v-6)=12$

A constant is a number whose value doesn't change, it always remains the same ex. 2001-3 73715 -8

TRY THIS! Language of Algebra
 $$
4 a+b-12 c+5
$$

1. List the individual terms in the expression
2. In the expression, state the coefficients of a, b, c and d
3. What is the constant term?
4. State the coefficient of b in the expression

$$
3 a+4 a b+5 b^{2}+7 b
$$

SOLUTION

$$
4 a+b-12 c+5
$$

1. List the individual terms in the expression

Each part of an expression is a term. Terms get added (or subtracted) to make an expression. So, there are four terms: $4 \mathrm{a}, \mathrm{b}, 12 \mathrm{c}$ and 5
2. In the expression, state the coefficients of a, b, c and d The coefficient is the number in front of a variable. So, The coefficient of a is 4. the coefficient of b is 1 because b is the same as $1 \times b$. the coefficient of c is -12 because this term is being subtracted. And the coefficinet of d is 0 because there are no terms with d .

SOLUTION

$$
4 a+b-12 c+5
$$

3. What is the constant term?

A constant term is any term that does not have a variable (letter) in front of it. The constant is 5
4. State the coefficient of b in the expression

$$
3 a+4 a b+5 b^{2}+7 b
$$

Although there is a 4 in front of $a b$ and $a 5$ in front of b^{2}, neither of these are terms containing just " b ", so they are ignored. We are looking for only 'b' by itself. So, the coefficient is 7 , for 7 b .

TRY THIS!

Write an expression for this sentence:
Start with a number, multiply it by three then add five
Let the starting number be " y "

1. Start with a number
2. Multiply by 3
3. Then add 5

$$
y \times 3+5
$$

So the algebraic expression is:

$$
3 y+5
$$

TRY THIS!

Write an expression for each of the following

1. The sum of 3 and k
2. The product of m and 7
3.5 is added to one half of k
3. The sum of a and b is doubled

Solutions

1. The sum of 3 and k

The word sum means ' + ' so, $3+k$

2. The product of m and 7

The word 'product' means to \times so, $m \times 7$ or 7 m
3. 5 is added to one half of k

One half of k can be written $\frac{1}{2} \times k$ (because 'of' means \times) or $k / 2$ because k is begin divided by two
4. The sum of a and b is doubled

The values of a and b are being added and the result is multiplied by 2. brackets are required to multiply the qhole result by two and not just the value of b

$$
(a+b) \times 2 \quad \text { or } \quad 2(a+b)
$$

What is a polynomial? an expression that can have constants (like 4), variables (like xary), and exponents (like the 2 in y^{2}), that can be combined using addition, subtraction multiplication or division.
BUT: no dividing by a variable $\frac{2}{x}$

- variable exponents must be whole numbers $(0,1,2,3 \ldots$.
- can not nave an infinite numberal terms. (ie :must

Algebra Tiles \& Visual Representation
Red tiles represent positive 1
圂
Positive 1 -tile

Green tiles this shape represent positive x

x tile

Green tiles this shape represent positive x^{2}

USING THE 2 PAGES YOUR TEACHER HAS PROVIDED, MAKE YOURSELF 1 SET OF POSITIVE ALGEBRA TILES AND 1 SET OF NEGATIVE ALGEBRA TILES

- There are ziplock bags on mudesk for students to stare tiles.
- This is Homework must be cut t coloured - This is $\frac{\text { Hamewark }}{\text { next class!. }}$

1	1 1 1	1	11	11	11	1	11	11		11	1	1	1
1	1 1 1	11	11	1	11	1	11	1	1	1	1	1	1
1	111	1	11	1	1	1	11	11	1	1	1	1	1
1	111	11	11	1	11	1	11	11	1	1	1	1	1
1	111	1	11	1	11	1	11	11	1	1	1	1	1
	x^{2}						x^{2}						x
	x^{2}						x^{2}					x	x
	x^{2}											x	x
	x^{2}						x^{2}			$x \times$		x	x

PRACTICE
Example \#1: Use algebra tiles to model each expression below.
a) $2 x^{2}+3 x-5$
b) $-4 x+9$

Example \#2: Write the expression represented by the algebra tiles below. au l "negative")
a)

A polynomial is one term or the sum/difference of terms whose variables have whole number exponents.

The expression is NOT A POLYNOMIAL when:
Terms are numbers, variables, or the product of

- There is a negative exponent ex. $2^{-3}, x^{-4}$ a number and a variable (ex. 6, x, or $3 x^{2} y$)
- The variable cannot be in the denominator of a fraction
- The variable cannot be inside a radical

$$
\text { ex. } \sqrt{x}, \sqrt[3]{y}
$$

Example \#3: Which of the following are polynomials? Explain your reasoning.
a) $-2 x+6$
yes, polynomial
b)

c) $\underbrace{1}_{i}-3 \mathrm{NO}+2$
© variables cannot a, variables be the denominator inside radicals
Vocabulary
Coefficients are the numbers in front of the variables.

The term with the greatest sum of exponents (from the variables only) determines the degree of the polynomial.

$$
\text { eg. } 5 w^{2} \text { degree }=2 ; 3 x^{2}+9 x y+y^{3} \quad \text { degree }=3
$$

The constant term is the one without the variable (its value does not change/vary when the value of x change, it remains constant)

$$
\begin{aligned}
& \text { mange, it remains constant) } \\
& \text { eg. } 3 x^{2}+9 x y+y^{3}+7 \leqslant \text { constant. a number } \\
& \text { "by itself" }
\end{aligned}
$$

Example \#4: For each polynomial below, determine the coefficients, the degree and the constant. The sign "belongs" to the term.

We classify polynomials by the number of terms.
A monomial has
one term. eg. $\frac{-3 x}{1} ; y^{2}$
A binomial has two terms eg. $-\frac{3 x}{1}+y_{2}^{2}$
A trinomial has three terms eg. $-\frac{3 x}{1}+y_{2}^{2}-\frac{8}{3}$

A polynomial is generally written in descending order. This means we order the terms with the highest degree term first, all the way down to the constant term of degree zero.

Evaluating Algebraic Expressions last!.

We can use algebraic expressions to solve problems and solve for things like cost. The following algebraic expression is used to determine the cost of a school field trip.

$$
C=\$ 300+\$ 10 \mathrm{t}+\$ 7.50 \mathrm{~s}
$$

where C is the cost, t is the number of teacher supervisors on the trip and s is the number of students on the trip.

$$
t=4 \quad s=100
$$

If a school field trip had 4 teacher supervisors and 100 students in attendance what would the total cost of the field trip be?

$$
\begin{aligned}
& \text { to the field trip be? } \\
& c=\$ 300+\$ 10 t+\$ 7.50 \text { (substitute in values }+ \text { solve !) } \\
& c=300+10(4)+7.50(100) \\
& c=300+40+750 \$ \$ 1090
\end{aligned}
$$

4.2 Adding and Subtracting PoLynomiaLs

Investigation: Model each polynomial using algebra tiles. USE YOUR OWN ALGEBRA TILES TO MODEL ON YOUR DESK!
 (cancel out...step below).

Consider the model for the polynomial $2 x^{2}-8 x+3-x^{2}+6 x-1$.
We organize the tiles by grouping the same sizes together and simplify by removing the opposite pairs.

These opposite pairs are sometimes referred to as zero pairs as they are equivalent to zero.
For example: +1 and $-1 ;+x$ and $-x,+x^{2}$ and x are zero pairs

The opposite pairs cancel out and we are left with:
Simplified expression: $x^{2}-2 x+2$

A polynomial is in simplified form when:
\rightarrow Its algebra tile model uses the fewest tiles possible (ccencel out all zeropcirs)
\rightarrow Its symbolic form contains only one term of each degree and no terms with a zero coefficient.

LIKE TERMS are:

\rightarrow Terms that can be represented by algebra tiles with the same shape AND size.
\rightarrow Terms with the same variable AND same exponent
\rightarrow Constants may be different. For example: $3 x^{2}$ and $5 x^{2}$ are still "like terms" because they are both "x "N variable t exponent are the scum.
Example \#1:
a) List three terms that are like terms with $5 x^{2}, x^{2}, 2 x^{2},-x^{2}$.
b) List three terms that are unlike terms with $5 x^{2}, x, x^{2} y, 5 x$

Group the like terms in the following expression:

Group the like terms in the following expressions:

1) $-6 k+7 k=K$
2) $n - 1 0 \longdiv { + 9 n } - 3$
$\underbrace{n+9 n}_{10 n} \underbrace{-10-3}_{-13}$
3) $-r-10 r$
$-11 r$
4) $12 r-8-12$

$$
=12 r-20
$$

4) $-4 x-10 x$
$-14 x$
5)

$$
\begin{aligned}
& \text { 6) } \begin{array}{l}
-2 x+11+6 x \\
-2 x+6 x+11 \\
4 x+11
\end{array}
\end{aligned}
$$

Adding Polynomials
Example \#2: What is the sum of $2 x+2$ and $3 x+3$?
Simplify the polynomial visually using algebra tiles and symbolically with algebra.

Example \#3: What is the sum of $2 x^{2}+2 x-3$ and $-x^{2}-3 x+3$?
Simplify the polynomial visually using algebra tiles and symbolically with algebra.

Example \#4: $2 x+31+(4 x-3)$
Remove the brackets + box like terms $\underbrace{2 x+4 x}_{\varnothing x} \underbrace{+3-3}_{\varnothing}$

Example \#5: $\left.\left(2 x^{2}\right)-4 x-(-1)+\left(3 x^{2}\right)+2 x+5\right)$ if you den 4 have colours, use Remove the brackets diff.shapes!!.

Rearrange so like terms are together
Combine like terms

PRACTICE

DO THE ADDITION QUESTIONS ONLY (COME BACK TO SUBTRACTION NEXT LESSON)
Simplify each expression.

1) $\left(5 p^{2}-3\right)+\left(2 p^{2}-3 p^{3}\right)$
2) $\left(a^{3}-2 a^{2}\right)-\left(3 a^{2}-4 a^{3}\right)$

(answers on next page) \Rightarrow

3) $\left(4+2 n^{3}\right)+\left(5 n^{3}+2\right)$
$4)\left(4 n-3 n^{3}\right)-\left(3 n^{3}+4 n\right)$
5. $\left(3 a^{2}+1\right)-\left(4+2 a^{2}\right)$
6) $\left(4 r^{3}+3 r^{4}\right)-\left(r^{4}-5 r^{3}\right)$
$\mathscr{H}(5 a+4)-(5 a+3)$
و) $\left(3 x^{4}-3 x\right)-\left(3 x-3 x^{4}\right)$
7) $\left(-4 k^{4}+14+3 k^{2}\right)+\left(-3 k^{4}-14 k^{2}-8\right)$
8) $\left(3-6 n^{5}-8 n^{4}\right)-\left(-6 n^{4}-3 n-8 n^{5}\right)$
9) $\left(12 a^{5}-6 a-10 a^{3}\right)-\left(10 a-2 a^{5}-14 a^{4}\right)$
10) $\left(8 n-3 n^{4}+10 n^{2}\right)-\left(3 n^{2}+11 n^{4}-7\right)$
11) $\left(-x^{4}+13 x^{5}+6 x^{3}\right)+\left(6 x^{3}+5 x^{5}+7 x^{4}\right)$
12) $\left(9 r^{3}+5 r^{2}+11 r\right)+\left(-2 r^{3}+9 r-8 r^{2}\right)$
13) $\left(13 n^{2}+11 n-2 n^{4}\right)+\left(-13 n^{2}-3 n-6 n^{4}\right)$
14) $\left(-7 x^{5}+14-2 x\right)+\left(10 x^{4}+7 x+5 x^{5}\right)$

Kuta Software - Infinite Algebra 1

Adding and Subtracting Polynomials

\qquad
Date \qquad Period

Simplify each expression.

1) $\left(5 p^{2}-3\right)+\left(2 p^{2}-3 p^{3}\right)$
$-3 p^{3}+7 p^{2}-3$
2) $\left(a^{3}-2 a^{2}\right)-\left(3 a^{2}-4 a^{3}\right)$ $5 a^{3}-5 a^{2}$
3) $\left(4+2 n^{3}\right)+\left(5 n^{3}+2\right)$

$$
7 n^{3}+6
$$

4) $\left(4 n-3 n^{3}\right)-\left(3 n^{3}+4 n\right)$ $-6 n^{3}$
5) $\left(3 a^{2}+1\right)-\left(4+2 a^{2}\right)$
6) $\left(4 r^{3}+3 r^{4}\right)-\left(r^{4}-5 r^{3}\right)$ $2 r^{4}+9 r^{3}$
7) $(5 a+4)-(5 a+3)$

1
9) $\left(-4 k^{4}+14+3 k^{2}\right)+\left(-3 k^{4}-14 k^{2}-8\right)$
10) $\left(3-6 n^{5}-8 n^{4}\right)-\left(-6 n^{4}-3 n-8 n^{5}\right)$ $2 n^{5}-2 n^{4}+3 n+3$
11) $\left(12 a^{5}-6 a-10 a^{3}\right)-\left(10 a-2 a^{5}-14 a^{4}\right)$

$$
14 a^{5}+14 a^{4}-10 a^{3}-16 a
$$

12) $\left(8 n-3 n^{4}+10 n^{2}\right)-\left(3 n^{2}+11 n^{4}-7\right)$ $-14 n^{4}+7 n^{2}+8 n+7$
13) $\left(-x^{4}+13 x^{5}+6 x^{3}\right)+\left(6 x^{3}+5 x^{5}+7 x^{4}\right)$ $18 x^{5}+6 x^{4}+12 x^{3}$
14) $\left(9 r^{3}+5 r^{2}+11 r\right)+\left(-2 r^{3}+9 r-8 r^{2}\right)$ $7 r^{3}-3 r^{2}+20 r$
15) $\left(13 n^{2}+11 n-2 n^{4}\right)+\left(-13 n^{2}-3 n-6 n^{4}\right)$ $-8 n^{4}+8 n$
16) $\left(-7 x^{5}+14-2 x\right)+\left(10 x^{4}+7 x+5 x^{5}\right)$
$-2 x^{5}+10 x^{4}+5 x+14$ time consuming.

Method \#1: Subtracting Polynomials Using Algebra Tiles
Example \#1: Subtract $\left(3 x^{2}-2 x\right)-\left(x^{2}+4 x\right)$
Start with the first polynomial:

We need to
(1) take away one x^{2} tile from three x^{2} tiles
take away four x tiles from two negative \times tiles
If you don't have enough positive tiles, you need to add more positive tiles and balance by also
adding the same number of negative tiles.

Simplified expression: \qquad $2 x^{2}-6 x$

Example \#2: Use algebra tiles to subtract $\left(4 x^{2}-2 x+1\right)-\left(3 x^{2}-4 x+3\right)$

(2) Trying to remove: $=2$ $-4 x$ but we only have $-2 x \ldots$. so we add zero pairs: until we nave enough.
...... (3) Trying to remove +3 , but there is only +1 ... add 2 mare as a zero pair so that there is 3 to remove.
(4) Remove $-4 x$ and +3 (show sin inpink)
(5) Count what Remains (circlive in)

$$
x^{2}+2 x-2
$$ there is now $-4 x$ to remove.

\rightarrow Faster method. (good if you tend
0 40 get mixed up with your +1 - signs)

Method \#2: Add the Opposite
Example \#3: $(5 x+4)-(2 x+1)$

The opposite of $(2 x+1)$ is $(-2 x-1)$

Remove brackets and add the opposite

Collect like terms

Combine like terms

Example \#4: $\left(3 x^{2}+4 x-2\right)-\left(2 x^{2}+6 x+2\right)$
The opposite of $\left(2 x^{2}+6 x+2\right)$ is $t\left(-2 x^{2}-6 x-2\right)$

$$
\begin{aligned}
& \left.3 x^{2}+\sqrt{4 x}-2\right)+\left(-2 x^{2} \sqrt{-6 x(-2)}\right. \\
& \underbrace{3 x^{2}-2 x^{2}}_{x^{2}} \underbrace{-4 x-2 x-2}_{-4 x-6 x-2 x} \underbrace{-2-2-2:-4)}
\end{aligned}
$$

Remove brackets and add the opposite

Collect like terms

Combine like terms
Method \#3: Subtracting Using Integer Properties ("paper an pencil method")
Warm Up: Subtract. (give students $2 \mathrm{mins} . .$. then go over answers)
a) 8-7
b) $-3-5$
c) 6 - (-4)
d)-2 - (-5)

$$
=+1
$$

$$
=-8
$$

$$
-2+5
$$

$=+3$
Example Subtract using properties of integers.
a) $\left(3 x^{2}-2 x\right)\left(x^{2}+4 x\right)$ to
a) $\left(3 x^{2}-2 x\right)-\left(x^{2}+4 x\right)$
to negative a

$$
3 x^{2}-2 x-x^{2}-4 x
$$ inside the

$$
\begin{align*}
& \text { apples } \\
& \left.-8 a^{2}+3 a-7 a^{2}+3 a-7\right)-\left(-2 a^{2}-a+5\right) \\
& \left.\left.\left.-8 a^{2}+3 a-(-7)+2 a^{2}\right)+(-a)-5\right)-5\right) \tag{2}\\
& -8 a^{2}+2 a^{2}+3 a+a-7-5 \\
& -6 a^{2}+4 a-12
\end{align*}
$$ braclicets.

$$
3-2=\underbrace{\underbrace{3 x^{2}-x^{2}}-2 x-4 x}_{2 x^{2}-6 x}
$$

