

Every type of reaction follows a specific and consistent pathway with a unique activated complex. When a catalyst is introduced to the reaction, the pathway changes and a different activated complex is formed with a lower Ea. Because of this lower Ea, a higher % of collisions are effective, thereby increasing the reaction rate.

Catalysts are involved in creating a different, lower energy activated complex, but remain unaltered at the end of the reaction.

An inhibitor forms a new activated complex that has a larger activation energy, thereby decreasing reaction rate.

Catalysts lower the Ea, thereby increasing the rate, but do they alter ΔH for the reaction? (look at the curve on above) NO. Because the catalysts inhibitor taken, the reactants used + products etered. The bord energy is the same. A catalyst is written above the reaction arrow in a reaction. However, sometimes, it's written as a reactant and a product (as it does not get used up in a reaction). Example Uncatalyzed (very slow): $2H_2O_{2(aq)} \Rightarrow 2H_2O_{(l)} + O_{2(g)} + energy$ exothermic Catalyzed (fast) $MnO_{2(s)}$ OR: catalyst 15 $2H_2O_{2(aq)}$ $2H_2O_{(l)} + O_{2(g)} + energy$ inchanised during a rxn. $2H_2O_{2(aq)} + MnO_{2(s)} \Rightarrow 2H_2O_{(l)} + O_{2(g)} + MnO_{2(s)} + energy$ Draw a PE diagram for the uncatalyzed and catalyzed decomposition of H₂O₂ uncatalyzed rxn. (hydrogen peroxide). catalyzed rxn.

regular reaction pathway to a new, lower energy reaction pathway.