VIII) Type A Problems: Calculating K_{sp}

K_{sp} constants can be calculated for **soluble** or **low solubility** salts, as long as a there is information available about the respective saturated solution.

Example:

1. If the solubility of Ag₂S in water is 1.3×10^{-17} M, calculate the $K_{\rm sp}$.

L saturated solution .. @ equilibrium

$$\frac{1}{32}$$
S(5) $=$ $\frac{2}{3}$ AG'(ag) + $\frac{5}{3}$ Cag)

$$\frac{A_{G2}S_{(5)}}{1.3\times10^{-17}M} = \frac{2.6\times10^{-17}M}{2.6\times10^{-17}M} = \frac{1.3\times10^{-17}M}{1.3\times10^{-17}M}$$

$$Ksp = \frac{[A_5^{+}]^{(2)}[S^{-2}]}{[Ksp = 8.888 \times 10^{-13}m)^{(1.3)}}$$

KSP & 1 supports the fact that Agas is a low solubility sult.

Example:

2. Calculate the K_{sp} of MgS if a maximum of 300.0g can be dissolved in (2.00L) f water.

$$1 \text{ mgS (s)} = \frac{1}{1} \text{ mg}^{2+}_{(aq)} + 15^{2-}_{(aq)}$$
 2.659 m
 2.659 m
 2.659 m
 $3.659 \text{$

$$Ksp=Lmg^{+3}[5^{-1}]$$
= (2.659)²

3(A 25.00mL sample of a ZnF₂ saturated solution has the excess solid filtered off. Then, the solution is evaporated to dryness. The mass of the ZnF₂ salt that remained was 0.508g. Calculate the solubility product constant ZnF₂.

$$\frac{C.508 \text{g} \, 7\text{nfz} \, | \, 1\text{mol}}{103.4\text{g}} = \frac{11.193 \, \text{g} \, 10^{-3} \text{mol} \, 2\text{nfz}}{35.7.}$$

$$\left[2\text{nfz}\right] = \frac{41.193 \, \text{g} \, 10^{-3} \, \text{mol}}{6.025000} = \frac{0.1965 \, \text{mol}}{6.025000}$$

$$[7nFa] = \frac{(1.193 \times 10^{-3} \text{mol})}{(1.03500)} = 0.1965 \text{m}$$

= 0.393m [Ksp-3.04x10-2] : Ksp<1, therefore

InFa is a low solubility sald.

Assignment 6: Type A Exercises

- 1. At 25°C, only 0.00245g of BaSO₄ can be dissolved in 1.0L of H_2O . Calculate the K_{sp} for BaSO₄.
- 2. At 25°C, the solubility of Ag_3PO_4 is $1.8\times10^{-5}M$. Calculate the K_{sp} for Ag_3PO_4 .
- 3. An experiment showed that a maximum of 1.49g of $AgBrO_3$ can dissolve in 1.00L of water at $25^{\circ}C$. What is the K_{sp} for $AgBrO_3$ at this temperature?
- 4. A saturated solution of CaF_2 contains 4.15×10^{-4} mol of CaF_2 in 2.0L of solution. What is the K_{sp} for CaF_2 ?
- 5. A solution in equilibrium with solid Ag_2S on the bottom of the beaker was found to contain $1.6 \times 10^{-16} M S^{2-}$ and $2.5 \times 10^{-18} M Ag^{+}$. Calculate the solubility product constant of Ag_2S .