XI) Type D Problems: Determining the Concentration of a Specific Ion in a Saturated Solution

Recall that there are two ways to make a saturated solution: the direct method and the indirect method. Explain each using $\frac{Pb(OH)_2}{Pb(OH)_2}$ as an example.

1. Direct Method:	add Pb(OH), salt to water + stir Keep adding until there is excess Pb(OH), solid at the bottom.
2. Indirect Method:	Mix two (ag) solutions: one that contains Pb ²⁺ and the other OHT, in concentrations that exceed the solubility of Pb(OH)2.

It is important to recognize that ion stoichiometry for a saturated solution is only a Direct. reality when the saturated solution is made from dissolving the salt in water directly. What would be the proportion of [OH⁻] compared to $[Pb^{2+}]$ in this case? $Pb(O+Q(s) = Pb^{2+}(a_{\ell}s) + 2O+\Gamma(a_{\ell}s)$ $Pb^{2+} : 2O+\Gamma$

If a saturated solution of a salt is made by combining two different solutions (indirectly), the [Pb²⁺] relative to the [OH⁻] could be anything, depending on the molarities of the solutions mixed. Therefore, you can't rely on 2 OH⁻ to 1 Pb²⁺ stoichiometry because the ions came from different solutions. However, the K_{sp} can still be relied upon, as you'll see in Type D problems.

Example:

1. What is the maximum [Sr²⁺] that can be dissolved in a 0.020M solution of K₂SO₄ without a precipitate of SrSO₄ forming? 1 K_a SO₄(*cag*) $\rightarrow 2K^{+}(ag) + 1SO_{4}^{-2}(ag)$ 0.020M x^{2} $\rightarrow 0.020M$ $(f_{ab}^{-2})_{K}Sp = [Sr^{2+}][SO_{4}r^{-1}]_{SO_{4}r^{-2}}$ 3.4 xl $r^{-7} = ? (0.020M)$ SrSO₄(S) $\implies Sr^{2+}ag$ $\rightarrow 0.020M$ $[Sr^{2+}] = \frac{3.4(xl0^{-2})}{0.020M}$ Solve for Esr²⁺] $\rightarrow 0.020M$ $[Sr^{2+}] = \frac{3.4(xl0^{-2})}{0.020M}$ USE Ksp for 3rSO₄(. 2. If Cu²⁺ is slowly added to a solution of 0.020M KlO₃ at what [Cu²⁺] does a precipitate of Cu(IO₃)₂ just start to form? KlO₃(ag) $\rightarrow K^{+}(ag) + 1O_{3}^{-}(ag)$ $(.9xl0^{-8} = [Cu^{2+}] (0.020M)^{2}$ $(.9xl0^{-8} = [Cu^{2+}] (0.020M)^{2}$ $(.9xl0^{-8} = [Cu^{2+}] (0.020M)^{2}$ $(.9xl0^{-8} = [Cu^{2+}] (0.020M)^{2}$

$$C_{u}(10_{3})_{z(5)} \rightleftharpoons C_{u}^{2t}(a_{g}) + 2(0_{5}^{-1})'$$

$$(0 \ge K_{5})$$

$$C_{u}(10_{3})_{z(5)} \rightleftharpoons C_{u}^{2t}(a_{g}) + 2(0_{5}^{-1})'$$

$$Example:$$
3. Fe(NO₃)₂ is slowly added to a 2.0L solution of 0.010M Na₂S. What mass of Fe(NO₃)₂
would be required to just start precipitation?
Fe(NO₃)₂ + No₂S \longrightarrow FeS(s) + No₄NO₃ deg
Fe^{2t} NO₅ $A_{a}^{-5} = possible ppl$

$$C_{u}(10_{3})_{z} + No_{2}S \longrightarrow$$
FeS(s) + No₄NO₃ deg
Fe^{2t} NO₅ $A_{a}^{-5} = possible ppl$

$$C_{u}(10_{3})_{z} + No_{2}S \longrightarrow$$
FeS(s) + No₄NO₃ deg
Fe^{2t} NO₅ $A_{a}^{-5} = possible ppl$

$$C_{u}(10_{2})_{z} + No_{2}S \longrightarrow$$
FeS(s) + No₄NO₃ deg
Fe^{2t} NO₅ $A_{a}^{-5} = possible ppl$

$$C_{u}(10_{2})_{z} - Fe^{2t} = (a_{2}) + 2(NO_{3})_{z}$$

$$C_{u}(10^{-17}m)$$

$$C_{u$$

4. Removing pollution by precipitation:

Waste water from a mining operation was found to have a $[Cd^{2+}]$ exceeding environmental standards. Before discharging the water into an adjacent river, the $[Cd^{2+}]$ in the tank must be lowered to 1.0×10^{-5} M. What $[OH^{-}]$ would be required to bring the $[Cd^{2+}]$ to an acceptable level? $K_{sp} = 2.2 \times 10^{-14}$ for $Cd(OH)_2$

$$Cd(0H)_{2}(5) \rightleftharpoons Cd^{2+}(ag) + 2OH(ag)$$

$$I \cdot O \times 10^{-5}M$$

$$K_{5p} = [Cd^{2+}][OH]^{2}$$

$$[OH] = \sqrt{\frac{K_{5p}}{[Cd^{2+}]}} = \sqrt{\frac{(2 \cdot 2 \times 10^{-14})}{(1 \cdot 0 \times 10^{-5}M)}} = 4 \cdot 7 \times 10^{-5}M$$

Assignment 9: Type D Exercises

1. What [S²⁻] must be present to just start precipitation from a 0.20M solution of CuCl₂?

2. What $[Cu^{2+}]$ would be required to just start precipitation of $Cu(IO_3)_2$ from a 0.20M solution of KIO₃?

3. AgNO₃ is added to a 0.10M solution of NaCl. What $[Ag^+]$ must be present in order to observe a precipitate?

4. What is the maximum $[SO_4^{2-}]$ that can be present in 0.010M CaBr₂ solution without a precipitate forming?

5. What $[Ba^{2+}]$ must be present to just start a precipitation in a 5.0 x 10⁻⁴M solution of K₂CrO₄ ?